戦略思考入門

立ち止まる勇気で未来を拓く

立ち止まる意味は? 「がむしゃらにやるだけではなく、一度立ち止まることも必要。毎回すべてを実行していてはスピードが落ちるため、だんだんと勘どころが分かってくる」という言葉を胸に、講座全体を通じて自身の課題への取り組み方を見直す機会となりました。目の前の課題の解決にのみ意識が向き、その背景や真の原因を探ることがおろそかになってしまう点、また考え過ぎるあまり実際の行動に移るのが遅くなってアウトプットに時間がかかる癖があることに気づきました。今後は、課題に直面した際にこの言葉を思い出し、より本質的な解決に取り組むよう心がけたいと思います。 環境をどう見る? また、ビジネスは環境要因も大きく影響するため、全てを自分の責任と考えず、少し時間を置いて状況を客観的に見ることが大切だと感じました。自分に可能なこととそうでないことを見極め、過度に自責で考えない姿勢を忘れずにいたいと思います。 本質をどう捉える? さらに、「定量的、正確性、精緻性にこだわると仮説思考が広がらない」という教えから、枝葉の部分に気を取られ、本質である幹の部分を見失わないようにする必要性を痛感しました。そこで、常に「ここで本当に考えたいことは何か」を自分や参加者に問いかけ、目的を見失わない議論を意識していきたいと考えています。 余白の価値は? また、思考の習慣を変えるために「1%でも余白を作ること」が重要であると学びました。平日の日々の中で少しずつ学習効果を実感できたため、意識的に余白時間を取り入れ、自己研鑽を継続していきたいと思います。 新市場の戦略は? 既存事業とは異なる市場への参入を検討する中で、今回学んだ内容は大いに活用できると実感しています。プロジェクトの方向性を検討する際には、まずありたい姿を描き、次にどのように競合との差別化を図るかを考えます。そして、実行フェーズでは物事を整理し、思いついた施策すべてを実施するのではなく、本質を捉えた施策を選び抜き、戦略的に取捨選択する必要があると感じています。特に、プロジェクトの根幹に係る方針検討では、潜在顧客の表面的な言葉だけに頼ることなく、その奥にある真のニーズを把握するとともに、検討した施策がプロジェクトの目的実現に沿っているかどうかを吟味するため、戦略思考を積極的に活用するつもりです。 計画は順調ですか? 直近の報告イベントに向けて、まずは以下のスケジュールでアウトプットを進めていきます。まず1週間以内に、プロジェクトの3C分析、5Forces分析、PEST分析、SWOT分析を実施し、自社が置かれている立ち位置を明確にします。次に1ヶ月以内に、先行する競合に対してどう差別化を図るかを顧客視点と自社のケイパビリティからアイディア出しし、その妥当性をVRIO分析で検証の上、適切な施策を選択します。そして2ヶ月以内に、上位者への報告の場でこれらの方針をプロジェクトの基本方針として承認していただくことを目標としています。短いサイクルで実施することで、通用する施策と不足している点を明らかにし、次の学びに繋げていきたいと考えています。

戦略思考入門

差別化の本質に迫る学びの一週間

差別化とは何か? 「他社との差別化を図る」や「既存の仕組みとの差別化を図る」といった「差別化」という言葉は、戦略を練る上で欠かせないものです。しかし、今回の学びを通じて、自分が提示したアイディアが本当に差別化されているのかどうかに疑問を感じるようになりました。「差別化」を考える際には、他者との共通点も徹底的に事前調査する必要があります。学習以前と比べて「差別化」という言葉を簡単に使うべきではなく、もっと分析や検討が必要だと感じました。 どのフレームワークを利用? 今週は、大別して二つのフレームワークを学びました。一つ目はポーターの提唱する基本戦略、そして二つ目は自社の競争優位性を活かして差別化を考える「VRIO」です。「VRIO」の中で特に「模倣困難性」については、これまで驚くような新しいアイディアにばかり注目していましたが、実は「偶然そうなった出来事」や「因果関係が不明な出来事」といった要素も含まれることを初めて学びました。また、独自の強みがあったとしても、環境や時代の変化を見落としてしまえば競合劣位になることも知りました。徹底した情報収集はやはり欠かせないものです。 競合分析のポイントは? まずは自社の競合について考えてみました。以下の三点が思い当たりました。 1. 業種から考える競合(航空会社として):国内外の航空会社、他のアライアンスなど。 2. 特徴から考える競合(公共交通機関として):新幹線、長距離バス、船、今後はリニアなど。 3. 提供する価値から考える競合(フルサービスキャリアとして):他社フルサービスキャリアや高級ホテル、料亭など。 顧客にとっては利用目的が異なるため直接対決にはなりませんが、「以前経験した良質なサービスを他でも受けたい」と考える顧客がターゲットとなり得ます。そのため、航空業界他社だけでなく、高品質なサービスを提供する他業界にも目を向ける必要があると感じました。競合分析は一朝一夕にはできない深い作業であることを学びました。 顧客が本当に求めるものは? 桜島と鹿児島市を結ぶフェリーの中で営業するうどん屋さんの創業者が、「お客さんが喜ぶもの」を考えた結果、短い船旅でも食べられるうどんを提供するようになったという話を聞いたことがあります。「顧客にとって価値があるかどうか」は、「お客さんが喜ぶかどうか」と考えることと同じです。そう考えると、顧客視点で徹底的にアイディアやサービスを考えることはそれほど難しくないと感じました。 情報収集の方法は多様に 私はサービス業に従事していますが、サービスの差別化を考えるにあたり、確実性が高い情報を得るためにはユーザーとして実際に利用することが重要だと思います。しかし、コストや時間の面で効率的とは言えません。書籍やウェブサイトのようなフォーマルな情報源から、YouTube動画や口コミといったカジュアルなものまで、様々な手段で情報収集をすることは効率が良いです。実体験と他者の体験を掛け合わせることで、より確度の高い情報収集が可能であると思い、実践したいです。

戦略思考入門

差別化戦略で優位性を築く方法を学ぶ

「差別化」って何? 「差別化」とは何か、そしてそのポイントについて、体系的に学び理解することができました。 差別化の条件は? 差別化とは、戦略の手法として、自社、競合、市場(顧客)を正確に把握し、分析した上で「目的」や「目標」に向けて自社が顧客ニーズを勝ち取り、優位性を保つことを指します。この際、「実現可能性」のある手法であること、「持続的な内容」であること、そして「模倣難易度」が高いことが求められます。 基本戦略はどう? 基本戦略を決めるには、ポーターの3つの基本戦略を踏まえた経営環境分析が重要です。それにより、自社が取るべき戦略の方向性を確認し、また競合の戦略も確認します。具体的には、コスト・リーダーシップ戦略、差別化戦略、集中戦略(ニッチ戦略)の3つです。これらを同時に達成することができれば、圧倒的な優位性を築けます。ただし、現実は複雑であり、何を見極めるべきかが見えにくくなることも多々あります。したがって、学びと実践を通じて、その視点を磨きたいと感じています。 顧客視点はどう? 差別化を行うには、まず「顧客」を明確にし「顧客の視点」から考えることが重要です。しかし、経営環境を正確に把握・分析しないと、ターゲットを間違え、結果として戦略も誤る可能性があります。今回の受講では、さまざまなフレームワークを活用しました。また、施策には「実現可能性」、「持続的な差別化」、「模倣の難易度」といった要素が求められ、例えばVRIOを用いて確認することが有効です。 実践の工夫は? 差別化の実践に向けたポイントとしては、ありきたりのアイディアに飛びつかないことが挙げられます。他にも、しつこく考えることや、他業界の差別化を学ぶこと、多人数で議論を行いアイディアの幅を広げること、自社の強みを意識し必要に応じて外部の力も借りることが重要です。 実務の見直しは? 普段の実務を振り返ると、差別化に向けてまだ取り組める余地があると感じます。特にありきたりなアイディアに依存せず、議論を深めることで実践が初めて意味を成すと実感しています。 営業戦略はどう? 差別化は営業部門での店舗運営や営業戦略を策定する際に活用できるイメージが湧きました。現状は間接部署に勤務していますが、過去の経験を活かし、店舗運営や営業戦略での利用が可能だと考えています。 経営戦略の確認は? また、自社や自部署の経営戦略を確認・理解する際にも差別化の手法が役立つと感じました。過去から現在、そして未来にかけての戦略を論理的に理解することで、自部署の方向性や次の一手を考える基盤を築けると思います。現状は営業部門ではありませんが、この部分での活用に向けた行動を進めています。 強みを活かすには? 自部署の強みを活かした差別化を検討するために、VRIOでの分析を行い、営業にとって差別化につながる提案を行っていきたいと考えています。そして、自部署の存在や発展が全社の差別化に繋がることを論理的に説明できるように努めていきます。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

リーダーシップ・キャリアビジョン入門

信頼で築くモチベーション管理術

インセンティブは何故? モチベーションとインセンティブの関係を理解することは、組織やチームのパフォーマンス向上に欠かせない要素であると感じました。適切なインセンティブはモチベーションを高める効果がありますが、不適切な場合には反感や非協力を招く可能性があることを改めて実感しました。 満足感はどう捉える? また、ハーズバーグの動機付け理論に基づき、仕事の満足感を「衛生要因」(給与や労働環境)と「動機づけ要因」(達成感や成長)の両面から捉える方法が有効だと痛感しました。一方に偏ると全体のモチベーション維持が難しくなるため、両面をバランス良く捉えることが重要です。 個々の動機はどう見極める? さらに、最も印象深かったのは、一人ひとりのモチベーションの源や現在の状態を正確に理解することの難しさです。人の動機は時とともに変化するため、リーダーやマネージャーにはその変化を敏感に捉える能力が求められると感じました。 信頼関係はどう築く? これらの学びは日々の業務やチームマネジメントに大いに活用できると思います。まずは、信頼関係を基盤とするために、1on1や日常の対話を通じてメンバーとの関係性を深めることが大切です。各メンバーの能力や性格、行動特性を把握し、適切な役割分担やサポートにつなげることも意識していきたいと考えています。 アプローチはどう選ぶ? ハーズバーグの理論を参考に、モチベーションの源泉や、メンバーが大切にしている価値観(成長、達成感、働きがいなど)を見極めることで、その人に合ったアプローチが可能になります。また、個人の目標を明確に設定し、定期的に進捗や変化を振り返る機会を設けることで、内発的な動機付けを促し、パフォーマンスとエンゲージメントの向上を目指します。 1on1は何故大切? 具体的な行動としては、まず週1回の1on1ミーティングを実施し、各メンバーのモチベーションや業務の進捗、抱える課題を細かく確認します。この場を通して、個々の状態や動機の源泉をしっかり把握し、必要な支援を提供します。 意見はどう共有する? 加えて、普段からオープンで双方向のコミュニケーションを心がけ、メンバーが自由に意見や課題を共有できる環境を整えます。私自身が透明性を持ってフィードバックを行い、安心して意見交換ができる雰囲気を作ることも重要です。 目標はどう進める? また、チーム全体の目標設定とその進捗の定期的な振り返りを行い、具体的なアクションプランを立てていきます。これにより、メンバーが成長を感じながら次のステップに向けた意欲を高める環境を作り出すことができると考えています。 観察で信頼を深める? 最後に、日常の観察と対話を通じて、各メンバーが大切にしている価値観やモチベーションの要因を深く理解する努力を続けます。これらの取り組みにより、信頼関係をより強固にし、メンバーが高いモチベーションで仕事に取り組む環境を実現していきたいと思います。

デザイン思考入門

デザイン思考でCX・EXを劇的向上

デザイン思考の学びとは? 今回の授業を通じて、デザイン思考のステップを学ぶことができ、ワークを通じてその理解を実践的に深めることができました。特に印象的だったのは、「自分の気分を色で表現する」というアプローチです。この手法は非常に斬新であり、言葉では伝えづらい感情や思考を視覚的に捉えられる点が非常に興味深かったです。 CXやEX向上への活用法とは? デザイン思考の考え方は、普段の業務で扱う顧客体験(CX)や従業員体験(EX)の向上に直接活用できると感じました。例えば、ホテル業界のクライアントが抱える「オンライン上の旅行代理店の評価向上」や「レビュー分析の効率化」といった課題には、ただアンケート結果を分析するだけでなく、実際の宿泊客がどのような体験をしているのかをきちんと理解する必要があります。デザイン思考を応用し、宿泊客のペルソナを作成し、彼らの視点から課題を捉えることが重要です。これには、既存のフィードバックに加え、インタビューや観察を通じた定性的な情報を収集し、体験の課題を明確に定義して創造的なソリューションを検討するアプローチが有効です。これにより、より本質的な改善策を提案できる可能性があると考えています。 ペルソナ作成の重要性とは? デザイン思考のフレームに沿ったソリューション提案を試みたいと思います。まず、顧客のペルソナを作成する段階では、クライアントの現状を整理し、ターゲットとなる顧客層である宿泊客や従業員の特徴を明確にします。そして、過去のアンケートデータやレビューを分析し、代表的なペルソナを作成します。このペルソナをクライアントと共有し、実態とのズレがないか確認します。 定性的情報の収集方法は? 次に、定性的な情報を収集する段階では、クライアントに宿泊客や従業員へのインタビューを提案し、必要ならホテル現場を見学して宿泊客の行動やスタッフの対応を観察します。また、オンラインの口コミやレビューを詳しく調べ、テキスト分析を使ってパターンを把握します。 課題の定義と可視化の仕方は? 顧客体験の課題を明確に定義する段階では、収集した定量データと定性データをもとに、顧客の不満や期待値とのギャップを整理します。課題を「宿泊前」「滞在中」「宿泊後」に分けて可視化し、クライアントと共有します。そして、影響度と実現可能性を基に、クライアントが優先して取り組むべき課題を整理します。 創造的な改善策の検討方法は? 最後に、創造的なソリューションを検討する段階では、他業界の成功事例やデザイン思考のフレームワークを活用し、新しい施策を考案します。クライアントとワークショップを実施し、改善策を一緒にブレインストーミングし、小規模なテスト運用を提案して、データをもとに改善を重ねるアプローチを取ります。 これらのプロセスを通じて、デザイン思考の視点を活かしてクライアントにとってより価値のあるソリューションを提供できるようになりたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

戦略思考入門

選択肢を絞り込む戦略的思考の力

どうして信頼できるの? 戦略思考で行動している人々の共通点について考えると、彼らは「人を巻き込み、率いることができる」という特性を持っていると感じます。なぜそれが可能なのかというと、戦略思考によって一貫性と成果の実現性が高まり、その結果として信頼を得られるからだと理解しました. 戦略で何が変わる? 戦略思考とは、①ゴールを定め、②ルートを選び、③最速で到達することです。グループワークでは、大学受験に向けて動機づけが高まっているものの、ゴールが明確でなく選択肢が多すぎてエネルギーが分散し、時間切れになる可能性があるという課題に対して戦略思考での助言を議論しました。大学受験のその先を考えることでゴールを明確化し、現状や理想を深く理解して選択肢を絞ることが必要です。このアプローチは仕事にも応用できると感じました. 未開拓市場の狙いは? 私の立場では、地域事業開発ミッションとして「未開拓市場への進出」をゴールに掲げています。しかし、具体的な選択肢が見えておらず、①現地有力パートナーとのパートナーシップ構築で市場理解を深め、②候補リストの作成で選択肢を絞り込みました。予測が難しい状況では、創発的戦略によって行動し、変化に対応しながら軌道修正することが戦略思考の実行であると再認識しました. どの案件を選ぶ? 次の段階として、優先すべき事案を見極めきれず、チームが疲弊し時間が足りないという現状があります。関係者が納得できるゴール設定が必要であり、選択肢をさらに絞り込みます。具体的には、次期中期計画に向けた「2倍成長」を目指し、収益を生む事業を選びます. 新規事業の未来は? 新規事業開発においては、選択肢を絞り、関係者が納得感を持てるゴールを設定し、チームが健康に取り組む状況を築きたいと考えています。1年以内に投資実行などの成果を目指します. 何が課題なの? 現在の課題は以下の通りです: - 4カ国の全てに同時にコミットしてしまい、優先度の低い国にもリソースを費やしている。 - 関係者の納得感のあるゴール設定ができず、選択肢を捨て切れていない。 - 選択肢が多すぎてリソースが不足し、チームが疲弊している。 - 短期間での成果が求められているが、集中して事業開発に取り組めない. これらの課題をふまえ、「次期中期計画に向けた2倍成長」という目標を軸に推進すべき事業を選抜します。選択にあたり、自組織内外の関係者から合意を得ることが不可欠です. - 他者が理解しやすいように現状を整理し、具体的には案件リストを整えます. - 塊をどう作るか、投資・収益規模、タイムラインを案件ごとに整理します. - 1対1の面談で本社と地域の上司に現状を伝え、取り組む市場や事業領域の合意を得ます. - 優先度を落とす案件に関しては、他組織に引き継ぎます. - 必要なリソースが不足する場合、体制を見直し、本社やシンガポールからの支援を求めます.

クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

デザイン思考入門

デザイン思考で拓く未来のチャンス

デザイン思考の本質とは? デザイン思考とは、単なるアイデア発想の手法にとどまらないものです。「共感」「試行」「発散と収束」を繰り返し、創造的でより良い解決策を見つけるための思考プロセスと理解しました。講義だけでなく、他の受講者との意見交換を通じて特に印象に残った学びや気づきを以下に挙げます。 共感が解決の鍵? まず、共感の重要性です。問題解決の出発点は、ユーザーの立場で深く理解することにあります。本当の課題を考えるためには、観察やインタビューを通じ、その場に顕在化していないニーズを探ることが求められます。 スピード感を持つ試作の重要性 次に、プロトタイピングとフィードバックのスピード感が大切です。素早く試作してフィードバックを受け取りながら改善するアプローチは効果的です。完成形を目指すのではなく、デザイン思考の各フェーズを行きつ戻りつしながら試して学ぶことで、より良い解決策が見えてきます。 発散と収束のバランスは? さらに、発散と収束のバランスも重要です。考えられる選択肢を広げる発散と、最適な解決策を絞る収束を交互に繰り返すことで、創造的な解決策を得ることができます。既存の枠にとらわれず、多様な視点を取り入れることが新しいアイデアを生む鍵となります。 デザイン思考の具体的な応用は? デザイン思考は、特に事業開発や組織開発のコンサルティング業務で応用できると考えました。新規事業開発を支援する際には、顧客ニーズを正確に捉え、適切なプロダクトやサービスを設計する必要があります。ユーザーインタビューや観察を通じて潜在ニーズを引き出し、アイデアのプロトタイピングを迅速に行うことで、事業の方向性が明確になります。 また、組織改革・組織開発を支援する際には、多様な視点から課題を分析することが必要です。エンゲージメント向上策を考える時に、現場の意見を集めながらプロトタイピングを進めることで、実効性の高い施策につながるでしょう。 クライアントへの効果的なアプローチ方法は? クライアントとのワークショップ設計やファシリテーションにも役立ちます。問題を整理し、解決策を共創する際に、発散と収束のバランスを意識すると、より効果的な議論ができます。アイデア創出の段階では多様な視点を採り入れ、その後、アイデアを整理して実行可能なアクションに落とし込むことが有効です。 これを踏まえ、以下のような行動を試してみたいと考えます。まず、クライアントの課題を整理する場面では、共感フェーズを意識し、「なぜ?」を繰り返し問い、本質的な課題を探ります。次に、ワークショップやミーティングをデザイン思考に沿って進め、新規事業のアイデア出しでは発散し、その後収束するという流れを意識します。最後に、プロトタイピングを有効に用い、提案前にシステムモデルを通じて思考を構造化し、フィードバックを得るなどして、提案をより洗練させます。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right