データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

クリティカルシンキング入門

日々のミーティングを変える3つの視座

バイアスを克服するには? 自分自身の経験や思考に基づいて偏った視点や考え方を持つことは自然なことです。しかし、それを認識し、偏った視点で物事を考えないようにするためには、特定の思考方法を学ぶことが重要です。ただ意識するだけでなく、3つの視座を持つことや自分を批判するもう一人の自分を作り、一定の方法や構造化されたスキルを用いて少しずつ学んでいく必要があると感じました。 ミーティングを効果的に活用するには? 私は頻繁にプロジェクトベースで仕事をするため、部署やチームを横断するメンバーが参加する日々のミーティングでこれを活用したいと思います。自身の考え方だけでなく、ミーティングに参加するメンバー全員がそれぞれの経験や思考に基づいて発言しているはずです。そのため、一歩引いた立場で意見をまとめ、プロジェクトをしっかり前に進めるために論点の整理やネクストステップの設計に役立てたいです。 効果的な思考法を実践するには? 頭の使い方を意識し、常に3つの視座を意識して自分を批判的に見るもう一人の自分を思い描くことが重要です。また、ミーティングの真の目的が何かをまず確認し、参加者全員の認識を統一させることも必要です。これらを常に意識し、繰り返し実践することで、できなかった時や他のメンバーからのフィードバックを受け入れることができるはずです。

リーダーシップ・キャリアビジョン入門

聞く力が開く新たなリーダー像

行動と能力の関係は? リーダーシップには「行動」「能力」「意識」の3要素があり、行動は能力と意識の掛け算で表されます。引き出しを増やすには、それぞれの要素を高める必要があると実感しています。 信頼関係はどう作る? また、誰もが状況に応じてリーダーシップを発揮できるというシェアードリーダーシップの考え方も重要です。信頼関係を形成するためには、言行一致が不可欠であり、その積み重ねが結果としてリーダーシップを生み出します。 話を聞く意味は? 心理的安全性を確保するためには、相手の話をとにかく聞くことが大切です。「この人は自分を理解してくれる」という実感が芽生えると、部下やフォロワーは自律的に考え、行動するようになります。 地域連携はどうする? 現在、私は人口減少地域での対策を担当しています。市町村職員とのパートナーシップを活かしてチームで業務を進める中で、外部と連携したプロジェクトにおいて強いリーダーシップが求められています。担当者の理解を深めるため、より多くの対話の機会を作る必要性を感じています。これまで話を聞く努力もしてきましたが、自分が発言し過ぎる傾向に改善の余地があると感じています。 工夫はどこにある? こうした経験から、外部機関との連携方法や業務の進め方についても、さらなる工夫が必要だと実感しています。

クリティカルシンキング入門

イシュー発見で未来を拓く学び

イシューはどう見抜く? 課題解決を進めるためには、まずイシューを特定することが重要です。これは、課題に対して最適かつ迅速な解決策を導くための基本であり、どの取り組みが最も効果的に課題を解決できるかを明確にするためです。具体的には、データを分解してイシューの特定を容易にし、内部環境と外部環境を分析することで、課題の本質を正確に把握する必要があります。さらに、イシューを問いの形にし、具体的かつ一貫して検討する点にも留意することが大切です。 IT戦略はどう考える? 学んだ手法とその解決方法を、自社業務と顧客先業務の双方に活かすことができると感じています。自社業務では、IT戦略を考える上で、どの領域に投資するかを提案することを目的とします。まず、自社の売上データを分解し、内部・外部環境を分析することで、ビジネスインパクトの大きい領域を特定します。その上で、従来のIT導入を促す戦略ではなく、顧客企業の利益向上を目的とした戦略を検討するための問いを立てたいと考えています。 業務効率改善はどう進む? 一方、顧客先業務においては、業務効率化を提案することが目的です。具体的には、システム検証業務において最も時間がかかる工程を確認し、どのタスクを削減できるかという問いを設定することで、より効率的な業務改善に繋げることができると考えます。

戦略思考入門

未来予測にAIを活かすビジネスフレームワーク活用法

フレームワークの総合的活用法は? フレームワークを用いることで、自分や関係者だけの限られた情報に縛られず、ビジネスにおいて必要な要素を総合的に考えることが求められます。手に入れられるデータは現時点のものに限られ、未来のデータは推測に依存せざるを得ません。しかし、重要なのは未来に基づいた施策であり、この未来に対する包括的な検討方法をどうするかが鍵となるでしょう。 AIはどこまで活用できる? 一般的なビジネスフレームワークは理解しやすく、人間同士の議論には適しているものの、過度に単純化されている部分もあります。現代ではAIの存在があるため、現時点での事実は人間が収集し、チェック、設定する必要がありますが、未来への影響、特に複雑な交互作用の部分はAIにシミュレーションを任せるといった取り組みが求められるでしょう。 AIを用いた未来予測の具体策は? 使い慣れたビジネスフレームワークに基づいてAIに未来を予測させるためのテンプレートを、DifyやExcelで考案しています。すでに「ゴールデンサークル」や「バリュープロポジション」、「ビジネスモデルキャンバス」、そして「機械学習プロジェクトキャンバス」の素案を作るためのテンプレートが存在しています。これらを活用し、交互作用をも含む未来の予測にAIを利用できないか、o1に相談してみます。

アカウンティング入門

顧客価値を見直しビジネスを強化する方法

顧客価値の定義とは? ビジネスにおいて顧客に対してどのような価値を提供するかを明確にするためには、対象となる顧客(ペルソナ)をしっかりと定義することが重要だと学びました。顧客ペルソナが不明確だと、ビジネスを構築するのに必要な要素や資金の計画が立てられません。また、ビジネスの成果は損益計算書(P/L)で大まかに計算できますが、利益が出ていない場合の修正プランも検討する必要があります。この際、ビジネスが提供する基本的な価値は不変とすべきで、そこがぶれると「なぜこのビジネスを始めたのか?」という根本的な問題に直面する恐れがあります。そのため、修正プランについても価値への影響を考慮しながら検討することが不可欠です。 自社サービスの価値を再確認するには? 現在の業務においても、自社のサービスや自分の組織・チームがどのような価値を提供しているのかを再確認します。その価値が実際に提供できているかどうかを測定する基準としてKPI(重要業績評価指標)が定義されているので、その関係を正しく理解することが必要です。 まずは社内情報を含めて、自社製品が提供する価値や関連サービスの価値の認識が、自分の理解と合致しているかを確認します。もし差異がある場合は、その部分を修正します。また、KPIについてもその設定背景を正しく理解し、同様に確認を進めていきます。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

学びのバランスを保ちながら進めるコツ

緻密な準備が成功を導く? 慎重になり過ぎず、頭でっかちになり過ぎないことが大切です。手を動かす前に仮説を立て、何を比較するかの指標を決める必要があります。ただし、やってみないと分からないこともあり、その際には柔軟に変更しても問題ありません。 有効な切り口を探る方法は? 引き出しの多さと選球眼が求められます。専門知識が少ない領域では、まずはフレームワークに頼るとよいでしょう。専門知識がある領域にフレームワークを掛け合わせることで、発見が生まれます。筋のよい切り口を選択するためには、現場の肌感覚としてのドメイン知識が重要です。 例えば、webサイトからの問い合わせを増やすための分析が必要な場合、データはすべて手元にあるので実践可能です。流入経路、案件種別、問合せ企業の業種、企業の所在地、案件規模、実施月、実施までの期間など、指標となり得る項目が多数あります。これらの指標を基に、問い合わせ数との相関関係を探ることで、有効な分析が可能となります。 仮説とフレームワークの活用 システムの切り替えに伴うベンダー選定や資料作成、現場からの業務要件整理とRFP作成などの業務においても、フレームワークや仮説の立て方が活用できることを実感しています。これらの方法は、実務において有用であり、実際に業務を進める上での基盤となります。

戦略思考入門

戦略思考で未来を切り拓く

戦略を構造化する重要性とは? 戦略と戦術を構造化して考えることが重要です。特に、長期的な視点を持ち、明確な目的を含めて戦略を立案することが求められます。その上で、社員とその戦略を共有し、全員が同じ方向に進むように巻き込み、モチベーションを高めることが必須です。戦略は単に立案するだけでなく、それを社員にどのように伝えるかが重要であり、一緒に進んでいける環境づくりが必要です。 経営戦略の実行に必要な要素は? 今後、自分の業務において経営戦略を立案し、実行していく必要があります。戦略思考を身につけることで、現在のやり方の中で維持すべき部分と、変革すべき部分を見分け、2030年までの中長期ビジョンを立案・実行していきます。この際、戦略思考に基づいて決定を行うことで、周囲を巻き込み、一緒に目標を達成できるようにしたいと考えています。 論理的思考と俯瞰的視点をどう身につける? 身につけるべき事項として、論理的思考、長期的および俯瞰的な視点が挙げられます。また、社員とのビジョンの共有やモチベーションの向上方法も重要です。経営層が社員に意識を持たせることは想像以上に難しく、経営層が伝えているつもりでも、実際には伝わっていないことが多いと感じています。このため、戦略を立案し、皆と共に進むことを考えなければなりません。
AIコーチング導線バナー

「必要 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right