マーケティング入門

ターゲティング6R手法で新市場を狙え!

セグメンテーションとターゲティングの重要性 セグメンテーションの切り口変数とターゲティングの6R手法を学びました。ターゲティングにおいては、市場規模や成長性、競合状況を考慮することが特に重要です。また、ポジショニングの軸を決める際も、自社製品の特徴に基づいて新たな顧客ニーズ層を時代に合わせた形で開発していく必要があります。そのため、ポイントや表現を柔軟に変化させることを学びました。 ポジショニング軸設定の課題とは? ポジショニングの軸を決める最初のステップとして「自社製品の特徴を洗い出す」ことがありますが、現時点では製品が明確に定まっていないため、ターゲティングの実行が難しい状況です。他の子会社との効率的な協力も行っているため、そこが商品のヒントになると考えています。同様の業界状況を持つ子会社の調査を通じ、新たに外部収益に貢献できる商品開発を行う必要があります。 顧客ニーズを捉える方法は? 現状では子会社からの依頼を受けて業務を行っていますが、顧客ニーズを明確に捉えていないまま進めています。今後は、顧客ニーズを意識しながら業務を進行させ、新たなビジネスチャンスに繋げていくことを目指します。

クリティカルシンキング入門

社員の声から見えてきた課題発見のヒント

分解の切り口をどう選ぶ? 分解する時は、まず全体を定義することから始めるべきです。分解の切り口を考える際には、時間・人・手段などの上位にある概念を意識することがポイントです。一つの切り口だけで断定せず、別の切り口でも分解してみると、新たな事実が見えてくることがあります。いくつかの切り口で分解してみることが大切です。また、ある事象にいたるプロセスで分けることで、どこに問題があるのかが見えてくることもあります。 サーベイ分析における新たな視点 従業員サーベイを分析する際、かつてはチームごとに分けていましたが、在籍年数やグレード別など、複数の切り口で分解してみることにしました。たとえば、部門間のコミュニケーションがうまくいっていない場合、具体的な事例を取り上げて、そのコミュニケーションのプロセスを分解し、課題を見つけることが有効です。 1on1後の課題洗い出しは? 現在、全社員との1on1を終え、課題の洗い出しをするタイミングにあります。そこで、まずは多く出てきた事象をプロセスに分けて書き出し、どの段階でズレが生じたり、問題のきっかけが発生しているのかを見つける作業を行いたいと考えています。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

クリティカルシンキング入門

多角的視点で課題発見!MECE活用術

項目分けの意味は? 意図的に項目を分けることで、問題が見つけやすくなると気付きました。特に、言葉の定義を明確にすること(例えば「子供」とは何を指すのか)が重要です。視点が多ければ多いほど、問題の発見が容易になり、解決策も増えてきます。しかしながら、日々の業務の慣れから、こうしたことを見落としてしまうと感じています。 経験に頼るリスクは? これまで、課題に対する解決策が自分の経験に偏っていることが多かったため、常に批判的思考を忘れず、「他に手はないだろうか?」と自問し続けたいと思っています。課題を特定する際も、経験に依存しがちなため、MECE(Mutually Exclusive, Collectively Exhaustive)を用いて視点を増やすことを意識しています。 数値分析の新発見は? PL(損益計算書)やBS(貸借対照表)を作成および分析する際には、経験に頼るだけでなく、MECEを用いて分解を行い、新たな洞察を得たいと思っています。また、新規施策を行う際にはターゲットの特定においてMECE分解と数値分析を活用し、数値的インパクトの大きい施策を立案し、実行に移していきたいです。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

デザイン思考入門

参与観察で発見する新たな強み

実践学びをどう見る? 新規事業の開発やマーケティング設計に、そのまま実践できそうな学びを得ることができました。これまで、クライアントのサービスを体感しながら感じる心理的変化に注目してきましたが、実際に現場や参与観察という体系化された視点があることは初めて知りました。今後は、こうした視点をより効果的に使い分けていきたいと考えています。 隠れた強みを発見? 参与観察を通じて、クライアント自身がまだ言語化できていなかった強みに気づけた点は大きな発見です。また、あるサービスで「2週間お待ちください」というメッセージを目にした際、その言葉一つで利用者が他の選択肢を検討してしまうという現実を実感しました。 仮説はどう検討する? さらに、ユーザーインタビューは取り組みやすい手法であり、私は年間に50~100回ほど実施しています。しかし、深掘りが充分でないと感じることが多く、その原因としては、仮説設定や事前のインタビュー設計の甘さ、また自分自身の解像度の低さが挙げられると思います。インタビュー実施前にどこまで解像度を上げ、仮説を立てるべきかについて、皆さんのご意見をお聞かせいただければと思います。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

クリティカルシンキング入門

視覚化でプレゼン資料が変わる予感

視覚化の意味は何? 今回のテーマである視覚化について学んだことで、新たな視点を得ることができました。これまであまり意識してこなかった視覚化ですが、メッセージの視覚化、グラフや文字表現の工夫、そしてスライドを丁寧に作成することで、資料がより効果的で理解しやすいものになることを実感しました。 学びをどう活かす? 学んだことを仕事に活かす方法についても考えました。具体的には、勉強会や研究会の案内文や資料作成時にアイキャッチを意識することです。これまではあまり意識していませんでしたが、今後は積極的に取り入れていきたいと思います。また、資料作成にも今回学んだ手法を活用できそうです。さらに、定期的に書いている5000文字程度の執筆にも、ビジネスライティングの手法を取り入れ、より質の高い文章を目指したいと考えています。 どう共有すべき? そして、まずは毎月開催している業務関連の研究会で、今回の学びをメンバーと共有したいと思います。案内文の作成やスライドの見せ方など、実践できることが多く、次回からすぐに活用できそうです。また、この内容を振り返り、若手社員と共有する時間を作りたいと思います。

マーケティング入門

体験でつながる感動の軌跡

どんな体験を創り出す? 商品開発においては、単に製品を作り売るだけでなく、その製品にまつわる体験をパッケージとして展開することが非常に重要だと感じています。これまで「何を売るか」、つまり商品そのものに注目しがちでしたが、今後は「どんな体験を提供したいか」「どのような感動を与えたいか」という体験面に着目した開発を進める必要があると思います。この視点を取り入れることで、既存のものでも新たな体験を創出できる可能性が広がると感じました。 伝え方をどう変える? また、営業店や本部への情報発信についても、現状は商品そのもののみに焦点が当たっていると感じています。これからは、商品を通じてどのような体験が得られるのか、何がどう便利になりどのような問題解決に繋がるのかといった点まで、積極的に発信していくことを意識していきたいと思います。 購入体験で何を感じる? さらに、物を購入する際にどのような体験ができるのかに着目することが大切だと感じています。加えて、広告や販促における表現方法にも注目し、その表現から学べる点を取り入れて、まずは体験を重視した視点をしっかりと持てるよう努めていきたいと思います。

戦略思考入門

戦略的思考と技術革新の融合

フレームワークの重要性とは? 人はそれぞれ独自の視点や価値観、バイアスを持っていますが、フレームワークを使うことで個人の視点を超え、より幅広い視点を考慮することが可能になります。さらに、フレームワークは政治、経済、社会、技術、環境といったさまざまな要因の影響を理解するのにも役立ち、その結果、より良い戦略的な意思決定が可能になります。 国際教育業界での経験 現在、私は国際教育業界で働いており、通常は戦略的計画にSWOT分析やPESTLE分析を使っています。しかし、最近の学習により、ポーターの「5つの力」フレームワークについて深く理解する機会がありました。特に、技術の変化が急速に進む中で、新規参入者や代替品の脅威をこれまで以上に慎重に考慮する必要性を痛感しています。 戦略計画への新たな視点 ポーターの「5つの力」フレームワークを現在の職場の戦略計画に取り入れた結果、現在の脅威となっている企業との提携を提案しようと考えています。具体的には、オンラインコースやAIチューターを提供する企業との連携です。こうした提携により、常に一歩先を行き、競争力をさらに高めることが可能だと考えています。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

「新た」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right