データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

ロジックツリーで退職分析に挑戦

自分に関係付ける重要性とは? どの内容も聞いたことがあるものでしたが、自分に関係付けて考えたことがないと気付き、少し恥ずかしい思いをしました。特に、ロジックツリーについては知識としては持っていたものの、実際に描くことはほとんどありませんでした。今後は退職分析において、要素分解を試みたいと思っています。こうした学びに必死になって取り組める環境に飛び込んで良かったと、改めて感じています。 問題解決の思考法はどう実践する? 問題解決のプロセスとして、What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているか)、How(どうするか)の順に考えることを学びました。しかし、私の場合、特に「Why」にこだわりすぎて哲学的になりすぎたり、わからなくなってしまうことがあります。そのため、この順番通りに愚直に考え、PDCAサイクルのように思考を回していきたいと思います。 人事データの分類方法は? 私は人事部でデータ分析を担当しています。ロジックツリーにおいて、人事データに関する情報は、「個人情報」や「雇用情報」などに分類されます。具体的には氏名、生年月日、性別、入社日、部署、役職、資格、経験、語学といった情報です。これをMECEにするためには、さらに細かく分ける必要があると感じました。また、人事データという漠然としたカテゴリーから、具体的に項目を洗い出すことが可能だと思いました。 実践のために心掛けることは? 実践においては、手を動かし、描き出すことが重要です。周囲のメンバーと積極的に対話し、多角的な意見を収集するよう努めたいと思います。同時に、目的を明確にすることを忘れないように心掛けます。そして、私は製造業に勤めていますので、「直接部門」と「間接部門」を混同しないよう、気を付けて分析していきたいと思います。

クリティカルシンキング入門

ナノ単科で学びが繋がる瞬間

学びをどう振り返るか? これまで学んできたことを振り返ると、それぞれが独立した点として思い出されることが多く、クリティカルシンキング全体がどのように繋がっているかを理解できていないと感じていました。しかし、ライブ授業を通じて振り返りと説明を受けることで、それらの点が線として繋がる感覚を得られ、理解が深まりました。また、知識をスキルとして定着させるためには反復トレーニングが必要であり、その方法についても説明を受けたことで、今後の行動に役立つ学びを得ることができました。 クリティカルシンキングとは? 「ありたい姿」を考える際には、クリティカル・シンキングとは何か、その効用は何かをある程度理解した上で再度考えてみると、クリティカル・シンキングを利用してどのような状態になっていたいのかが明確にイメージできるようになりました。 アウトプットをどう実践する? 学びの中で、知識をスキルとして定着させるためには、他者へのアウトプット、他者からのフィードバック、そして振り返りを繰り返すことが必要であると理解しました。授業でも説明されたように、会社外で多様なバックグラウンドを持つ人たちとディスカッションすることが一番効果的だと感じていますが、その機会を得るのは容易ではないため、普段の仕事の中で、報告や会議の場でアウトプットし、議論やフィードバックを得て、自分の中で振り返りを実践していきたいと思います。 フィードバックで何を改善する? アウトプットを出す際には、「問いを立てた上で、答えを論理的に考える」、「一度結論が出ても、客観的な視点から他の切り口でも考える」を実践していきます。フィードバックについても、積極的に他者から意見をもらうように行動し、その後、自分の中でできたこと、不足していたことを振り返り、次に繋げるという行動をしていきたいです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

戦略思考入門

経験と知識を活かす!成長のヒント

規模の経済性はどう? 規模の経済性に関しては、以前の部署では固定費としての人件費に特に注意を払っていたものの、現在の部署ではその意識が薄くなっていることに気づきました。これは、企業運営において重要な指標であり、一層の意識改革が必要だと感じています。 範囲の経済性を疑う? また、範囲の経済性についても考察しました。他の事業に利用できるように見えても、安易な多角化には注意が必要です。例えば、ペンタゴン経営を試みたものの失敗した鐘紡の例は重要な教訓です。 総合演習から何を学ぶ? 総合演習を通じて、特に厳しい状況においては他社の成功例や新しいツールに飛びつきがちになることを実感しました。自分の力だけではどうにもできない人口動向や嗜好を考慮した上で、自社の強み分析や経常利益計算を進めることの重要性を改めて認識しました。 部署間の役割は? 現在の部署は事業部制であり、規模の経済性や範囲の経済性を活用する可能性があります。そのためには、自分の部署だけでなく、他の部署の業務を理解する必要があります。 結果をどう捉える? 売り上げに直結していない部署であるため、新しいアイデアやツールを積極的に取り入れる風潮があります。しかし、結果を十分に振り返る機会が少ないため、取り入れる意義や将来性を精査した上で決断することが必要だと学びました。 知識共有の重要性は? また、経験や知識を社内で共有し、学べる環境の整備も考えています。今年の9月には部署を横断してワークショップを開催しましたが、それが単発で終わることなく、継続できる仕組みを作りたいと考えています。 新挑戦の議論は? 新しいことにチャレンジする際にはよく時間的制約がありますが、事前にメリットやデメリットをしっかり議論してから取り組むことが大切です。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

クリティカルシンキング入門

データ分析で得た新たな視点を活かす

テクニックって何? 最初に、テクニック面で以下の点を再確認しました。まず、「何となく考え始める」のではなく、「イシューは何か?」を明確にすることからスタートします。そして、そのイシューが正しいかを客観的に考え、特定したイシューを分析する際には「ひと手間かけて」データを加工することが大切です。さらに、データの分解が正しいかどうか、一度立ち止まって考える姿勢を持ち、相手に伝わるように丁寧にスライドを作成することが重要です。 心はどう向き合う? 次に、気持ちの面でも以下のことが身に染みました。人や書籍から知識を得るだけではなく、自分の頭で考えることをしなければ、自分の力にはなりません。しかし、自分勝手に考えるだけで人や書籍から学ばなければ、独断に陥ってしまいます。これからも「自分自身で考える」ことを止めてはいけないと強く感じています。 タスクの理由は? ルーチンのタスクにおいても、なぜそれを実施しているのか、実施の必要があるのかを改めて考え直しながら業務に取り組むべきだと感じました。そのため、早速月曜日から思考を止めることなく行動していきたいです。また、企画を立案する際には、イシューの特定から相手に伝わる資料の作成・提案までのすべてのフローで今回学んだことが実施できているかを確認しつつ進めていきたいと考えています。 具体的には、ミーティング参加時にはイシューがぶれていないかを常に確認します。そして、思考を整理する際にはMECEやピラミッドストラクチャーなどのフレームワークを活用し、思いつきで行動するのではなく、一度立ち止まる癖をつけるようにしたいです。また、資料作成時には論理的思考をベースに下準備を行い、データを分析し、相手に伝わるかという視点に重きを置く習慣をつけることが必要だと考えています。

戦略思考入門

優先順位付けと新たな発見への挑戦

相手との関係性をどう考える? 演習を通じて、相手との関係性や取引額、さらには成長の可能性といった観点から優先順位を考えていました。しかし、後半では時間に基づいた利益という定量的評価も取り入れる視点を学びました。この判断基準が自分に不足していたことを痛感し、大変貴重な学びとなりました。特に、取捨選択のプロセスにおいて「捨てることで顧客の利便性が向上する」場合があることに気づかされました。具体的な事例に基づく判断は、実際には非常に難しいと感じました。 優先順位をどう設定する? 優先順位を設定する際には、様々な要因を整理することが重要です。特に取引額や避けるべき困難について深く考えることは、非常に良いやり方です。また、自らの判断基準が不十分であった点を振り返ることで、次のステップでの実践的な知識を得ることができるでしょう。 クライアントの評価基準は? クライアントへのアプローチでは、限られた時間の中でこれまでの関係性のみならず、時間をかけても成果が得られるかといった定量的な判断基準も取り入れて考えていきたいところです。ただし、私が担当している業務自体が新しいものであり、進め方を模索している段階です。そのため、これらの定量的判断をアプローチの優先順位に組み込みつつ、業務自体の必要性や無駄を検討し改善を進めていく必要があります。 改善を進める方法は? 現在のクライアントに対しては、売上高以外の指標、例えばLTVや自社サービスの活用度を見直し、それまでの関係性とあわせて優先順位を再考します。また、業務にかける時間に対する価値を改めて評価し、外部委託できるものがないかも検討します。さらに、自分だけで考えず、業務をあまり知らない人にも説明し、別の視点から意見を求めることも取り入れたいです。

戦略思考入門

しつこく考え抜く戦略の極意

戦略活用の難しさは? 戦略に関する知識を得ることは簡単ですが、それを実際に活用する際には多くの困難が伴います。ただ単に表面的な発想に頼らず、しつこく考え抜くことが重要です。また、なぜ大企業がその案をこれまで実施しなかったのかを理解することも、戦略策定には欠かせません。自分が最初に思い付くものは稀で、多くの場合、大手や競合も同じアイデアに至ったものの何らかの理由で実現していない可能性があります。自社でできる理由を見つけ、それを基に差別化を図ることが重要だと感じました。 提案の根拠は何だろう? 施策を提案する際は、自社がそれを実施できる根拠をしっかりとつなげる必要があります。現代においては、リソースが限られ、従来のように市場の先を行くリーダー戦略を活用するのは難しいです。初期投資や損益分岐点をしっかりと試算し、どのタイミングでどうであれば成功か失敗かの基準を定めることが大事です。これらの基準を前もって設定しておけば、冷静な判断軸を持てます。そのため、これを意識していくことが必要だと考えます。 徹底調査の意義は? また、妥協せず徹底的に調査する姿勢を持つことも重要です。今後、業務において提案する機会がありますが、その際には自分のアイデアに対して常に批判的な視点を持つよう意識するべきです。「なぜ」を繰り返し問い、批判的に思考することで、より正しい提案を進めていくことができます。 成功基準の決め方は? このプロセスには、以下のステップが重要です。 1. 仮説が論理的に固まるまでしっかりと調査・分析を続ける。 2. 批判的思考を用いて、反対意見に対する答えを十分に検討する。 3. 競合や大手企業に対する対策や、それができない理由を考える。 4. 実施前に成功と失敗の指標を設定する.

クリティカルシンキング入門

クリティカルシンキングで学びを深める旅

クリティカルシンキングの効果は? 私が今回の学習を通して感じた重要な点は、クリティカルシンキングを常にトレーニングして身につけ、それをアウトプットすることの大切さです。学んだ知識を実際に使うことで、理解が深まりました。 問いを立てることの重要性 特に「目的は何か」を常に意識し、自身や他者の思考の癖を前提に考えることが重要だと感じました。また、問いを立てることで方向性を見失わず、具体的な行動に繋げられることを実感しました。 WEEK6では、WEEK1で学んだ内容を少し忘れてしまっていたため、復習の重要性を再認識しました。特に「問いは何か?」という点について、その重要性を改めて感じました。 社内での打ち合わせをどう活かす? 社内の打ち合わせでは、方向性を見失うことがあります。そのため、常に問いを立てて共有することが必要です。いきなり具体的なアクションに飛びつかないようにし、物事を分解する際にはMECEを意識して取り組むことが効果的だと感じました。 資料作成で確認すべきことは? 資料作成に関しては、誰に何を伝えるための資料なのかを確認することが大切です。もし確認できない場合でも仮説を立てて資料を作成することが重要です。また、読み手の立場から考えて、伝えるべきポイントが明確かどうかを確認することが必要です。 アウトプットを増やす効果的な方法 最後に、アウトプットを多めに取り入れた勉強スタイルについてです。チャンスを逃さず、積極的にアウトプットの機会を作るように意識しています。例えば、同僚や家族、友人に学んだことを話してみることが効果的です。また、文章力を上げるために文章を書いてみる日を作り、アウトプットを通じて足りないインプット情報を見極めるよう努めています。

「必要 × 知識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right