データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

アカウンティング入門

目的が切り拓く未来の学び

なぜ目的意識が必要? 何気なく学習しても、一時的に記憶に留まるだけで、真に自分のものにはなりません。そのため、学習に取り組む際は、目的を明確に設定することが非常に大切です。 どうして苦手を捨てる? また、学習に対して「難しい」とあらかじめ思い込んだり、苦手意識を持たないよう注意する必要があります。経営に欠かせない重要な要素であると認識し、前向きな姿勢で学習に取り組むことが求められます。 情報はどう整理する? 具体的には、まずインプットとして、新聞記事などから得た他社の財務情報をアカウンティングの視点で捉えることが考えられます。そして、アウトプットの段階では、得た情報を継続的に整理・発信し、自社との比較から学びを深め、活かせる点を探ることが重要です。 意見交換は有意義? オリエンテーションを含めまだ回数は少ないものの、様々な業種の方々と意見交換ができるのは非常に有意義だと感じています。私自身、理解しにくい用語が飛び交うこともありますが、その都度学びながら参加しております。提供できる情報や知識に自信が持てない部分もありますが、どうぞよろしくお願いいたします。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値はどう選ぶ? 分析を進める上で、仮説思考は非常に重要です。まずは、比較する際に代表値を決める必要があります。一般的には平均値を用いますが、データの特性に応じて加重平均や幾何平均を用いる場合もあります。特に成長率などを算出する場合は、幾何平均が適しています。また、外れ値の影響を避けるため、外れ値が存在する場合は中央値を代表値として採用します。 データばらつきはどう見る? 次に、データの比較では分布(ばらつき)も注視し、標準偏差を算出して分析します。標準偏差の値が小さいとデータ間のばらつきが少なく、大きいとばらつきが大きいことを示します。さらに、データの関係性を把握しやすくするために、ビジュアル化を活用することが効果的です。現在のデータの割合を示すだけでなく、平均値や標準偏差を算出し、これらの指標を比較に活用することで、より精度の高い分析が可能となります。 外れ値はどう確認? また、分析に入る前にはROWデータをしっかり確認し、外れ値が存在するかどうかを把握することが重要です。これにより、どの代表値を使用すべきか判断し、適切な分析手法を選定することができます。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

アカウンティング入門

事業の価値に隠れた数字の秘密

P/Lの利益は何を示す? P/Lの5つの利益は、① 売上総利益(粗利)、② 営業利益(本業からの利益)、③ 経常利益(財務活動を加味した利益)、④ 税金等調整前登記純利益(一時的な損益を反映した利益)、⑤ 当期純利益(1年間の最終的な利益)です。 どの指標に注目? 一見、カフェという同じ業態でも、提供しようとする価値が異なれば、重視すべき指標も変わってきます。単価、客数、コストなど、どの要素を削減(または増強)すべきかは、事業が提供する価値次第で決まります。したがって、事業の価値を念頭に置きながらP/Lを見ることが重要です。 戦略はどう選ぶ? また、他社の事例を参考にすることもありますが、事業が提供する価値によって取るべき戦略が全く異なることが分かりました。安易な比較や模倣を避け、自社の事業価値を十分に理解したうえで戦略を検討する必要があります。さらに、これまではホームページなどで定性的な情報に目を向けていましたが、今後はP/Lの数字や決算に関するニュースを確認することで、事業を通じてどのような価値を提供するのかをより明確に把握できるようになると感じています。

アカウンティング入門

問いが導く業界と成長へのヒント

業界理解は十分ですか? 一見理解しやすいと思われがちな業界であっても、その特性を十分に理解しなければ、売上や費用の数字を正しく読み解くことは難しいと実感しました。各業界の事業特性を踏まえることが、財務諸表の分析能力を向上させる鍵であると感じています。 問いで成長できるでしょうか? また、学習方法として「問いを受け、考える瞬間こそが成長の起点である」という点に気づかされ、今後の学びに大きな影響を与えていると感じました。 比較分析の基本は何でしょう? 基礎面では、自身の業界や関連業種間での企業比較分析を日々の業務に活かすことで、アカウンティングの基本的な活用方法を確立していきたいと思います。 経済全体の見方はできていますか? さらに、ビジネスマンとして様々な業種を対象に、社会経済全体の動向を理解する視点を広げる必要性を強く感じました。そのためには、各業界の事業特性や直面している社会課題を正しく把握することが不可欠です。今後は、継続して学習プログラムを受講することや、新聞などの資材を利用して社会経済全般の知見を深める取り組みを進めていきたいと考えています。

データ・アナリティクス入門

データで解く! 成果を上げる実践術

理解を深めるためには? 自分が「なんとなく分かっていた」と思っていたことも、改めて問われると言葉に詰まってしまうことがあります。それは実際には十分に理解できていなかったからかもしれません。分析を行う際には、各要素を比較し、言語化することを意識する必要があります。普段の研修では聞き手に回ることが多かったため、アウトプットするのは不得手でしたが、この学習を通じてしっかりと身につけたいと思います。 データ活用の戦略は? 業務実績データから得られる課題抽出や傾向の把握、戦略立案などに活用したいと考えています。特に、各支社・拠点におけるデータを活用し、問題解決に結びつけていきたいです。また、意思決定の過程では、常に数字に基づいて話すことを徹底し、業務で成果を上げていくことを目指します。 効果的な比較分析法は? データ分析においては、比較分析を徹底する必要があります。それに伴い、できる限り多くのデータを集めることが理想ですが、労力も相当なものになるでしょう。無駄な作業にならないよう、目的やアウトプットイメージ、期限、制約をしっかりと言語化し、伝えることが重要です。

データ・アナリティクス入門

平均値だけじゃ見えない真実

データはどう活かす? データは単に眺めるだけでは意味がありません。他のデータと比較することで初めてその意味が明らかになります。また、数値化やデータの加工を行うことで、より多くの情報が見えてきます。代表的な統計量を見ることで全体の傾向を把握できるものの、平均値だけではデータのばらつきを捉えきれないため、標準偏差の確認やグラフ化によって視覚的に捉えることが重要です。 グラフ作成はどう選ぶ? 多くの数値データを扱う際には、経時変化を示すグラフを活用することも大切だと感じます。ただし、複数の要素が存在する場合、どの部分をグラフ化するかの選択は慎重に行う必要があります。あらかじめ目的に沿った問題箇所を整理し、具体的にどの要素が有効かを明確にした上でグラフ化する習慣を身につけたいと思います。 数値の裏側を探る? 業務でデータを加工したり、調査を行う場合、平均値が頻繁に目に入りますが、その数字の背後にあるばらつきを意識することが欠かせません。単純な数字に惑わされず、加重平均や幾何平均といった他の代表値も適切な場面で選択できるように、知識を深めていきたいと考えています。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

アカウンティング入門

学びと実践で深めるP/L理解

P/L理解の重要性を考えよう P/Lの構成要素について理解が進みました。P/Lを読む際には、価値を考えることが重要です。事業のコアバリューと一貫性を持った施策を考えることで、収益性を向上させることができると感じています。これらを念頭に置き、さらに学びを深めていきたいと思います。 他社比較の必要性とは? 自社の前期の決算資料を見たところ、以前よりも理解が進みました。しかし、自社内で年数を比較しても良し悪しが見えにくいと感じました。そのため、他社と比較してみることを考えています。また、部門ごとに事業が異なり、提供している価値が違うため、部門ごとのセグメント利益が発表されてはいるものの、分野が分岐しており、自分が所属する分野単体でのP/Lは発表されていない状況です。これについても確認したいと思っています。 雑誌の参考価値は? さらに、先日紹介された雑誌を参照しようと考えています。そして、自分が所属している分野単体でのP/Lを確認し、管理している物件ごとの収支との関連性を把握したうえで、コアバリュー・一貫性のある施策を改めて整理したいと思います。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right