データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

マーケティング入門

論理で読み解く市場の真実

どう学ぶべき? セグメンテーション、ターゲティング、さらにターゲティングの評価基準である6Rを学んだことで、これまで感覚的に捉えていた要素を論理的に整理でき、理解が一層深まりました。 どう分析する? 実際のビジネス現場では、すでにこれらのフレームワークを取り入れている場合が多いと感じますが、新製品の投入や期待した成果が得られていない場面では、改めて基本に立ち返ることで状況を正しく分析できると実感しました。 市場はどんな? また、外資系IT製品の取り扱いに関する経験を通じて、本国で成功している製品であっても、他国や日本市場で展開する際は市場特性を再検討する必要があると改めて認識しました。市場ごとの違いを正確に把握し、それに合わせた戦略を取ることの重要性を感じました。 次に向かう意欲は? 今後は、これらの学びを自らの業務に生かし、市場ごとの特性を十分に理解する視点から再評価を進めていきたいと思います。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

リーダーシップ・キャリアビジョン入門

自分らしさで切り拓くリーダーシップ

リーダー型の考え方はどう? 全体を振り返ると、リーダーシップの型(指導型、支援型、参加型、達成志向型)にこだわる必要はないと学びました。これまでは自らのリーダーシップを発揮する際に、指導型から支援型や参加型へと変わることを意識していました。しかし、今後は「どんな仕事か(環境要因)」と「どんな相手か(適合要因)」を見極め、柔軟に対応する中で自分らしさを大切にしていきたいと感じました。 会議で何を振り返る? 毎月初めの会議では、進捗管理だけでなく、業務の振り返りと問いかけを積極的に行っています。また、動機づけを忘れずに実施することで、メンバーの自律性やモチベーションの向上に寄与しています。会議においては、振り返りの割合を高め、具体的な事例をもとに本人の言葉で状況を語ってもらいます。そして、傾聴・共感・尊重の姿勢をもって問いかけることで、個々の気づきを促し、そこから得られる教訓を成長に結びつけるサポートをしています。

データ・アナリティクス入門

自分を動かす学びの羅針盤

全体像はどう把握? これまで学んだ分析についての総括を通して、その全体像を把握することができました。特に、今後取り組むべき内容が整理され、自分が実践すべき具体的なアクションが明確になったと感じています。引き続き学びを継続する重要性も再認識しました。 分析はなぜ必須? また、業務の基本として「分析」を位置づけ、あらゆる場面でデータ分析が必要であることを意識するようになりました。同時に、「仮説思考」がデータ分析だけでなく、全ての施策を検討する際に欠かせない考え方であることを実感し、今後も意識的に取り入れていきたいと考えています。 実践をどう積む? さらに、小規模な事例を通じた実践を重ねることで、現場でのデータ分析の経験を着実に積み上げていくことが求められると感じました。今回学んだ知識を、自分なりに職場のメンバーにフィードバックする機会を設けることで、他者に伝えられるレベルまで理解を深めていきたいと思います。

戦略思考入門

戦略×柔軟性で切り拓く未来

内外環境をどう見る? 戦略思考全体を振り返る中で、まずは内外環境を正確に認識し、各フレームワークを活用して戦略を描くことの重要性を実感しました。広い視野や高い視座、そして経営視点を持つためには、顧客の価値を見極め、実現可能性や持続可能性、さらには独自性や模倣性について組織内で実行できるかどうかを検討する必要があります。また、インパクトが大きく不確実性の高い事象に備えてシナリオプランニングを実践すること、さらに事業経済性を本質的に捉える大きな視点を持つことも重要だと再認識しました。 DX推進の秘訣は何? 自身が担当する市場品質業務プロセスのDX化では、AIの進化など変化が激しい中で、短期間での戦略検討が求められています。直接的な競合との戦いではないため、慎重に戦略を検討する一方で、各種シナジーの効果も意識しながら取り組む必要があります。これからも実践を心がけ、柔軟かつ迅速な戦略立案を続けていきたいと考えています。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

クリティカルシンキング入門

相手を惹きつける文章の秘密

文章作成で意識するポイントは? 文章を書く際は、相手を意識して主語、述語、修飾語、句読点の位置などを丁寧に考慮することの大切さを学びました。実務の現場では、利用者の様子を報告書にまとめ、ケアマネジャーや医師に情報を伝える業務があります。多くの場合、主語は利用者となりますが、状況に応じてご家族やリハビリを担当するセラピストなどが主語になる場合もあり、どのような行動や変化が起こっているのかを明確にすることが求められます。 報告書はどのように伝える? 具体的には、ケアマネジャーに対しては、利用者の生活状況や動作の様子が伝わるように報告書を作成します。専門用語についても省略せず、日本語で丁寧に表現し、必要に応じて用語の説明を加えることで理解しやすい文章を心がけています。一方、医師向けの報告では、生活状況に加えて血圧や脈拍などのバイタルサイン、病状の変化をできる限り数値化して具体的に伝える必要があると考えています。

データ・アナリティクス入門

仮説が開く新たな視野

どうやって仮説を立てる? 「仮説を立てる」ことの大切さとして、まず、3Cや4Pなどの関連フレームワークを用いることで、偏った視点に陥らずに物事を捉えることができる点が挙げられます。仮説を設定することで、問題解決へ向けた具体的なアプローチが見えてくるだけでなく、説得力のある説明が可能になると感じました。結果として、自身の意識が向上し、業務のスピードアップや行動の精度の向上に繋がると実感しています。 偏った視点をどう変える? 既存の業務では、どうしても問題解決の視点が偏る傾向にありました。そこで、関連フレームワークの活用が、より広い視野に立った提案に結びつくと思います。まずは、現在抱えている事業の課題に対し、既存情報と新たに必要な情報を整理するところから始めました。必要に応じて関係部署へのヒアリングや、他の事例の調査も実施し、その結果をもとに、より具体的で説得力のある提案へと発展させることを目指しています。
AIコーチング導線バナー

「必要 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right