クリティカルシンキング入門

「ピラミッドストラクチャーで相手を説得!」

説明の根拠はどう確認する? ピラミッドストラクチャーを用いることで、説明の際にその根拠に共通する要素を確認し、文章の構造を理解する学びを得ました。共通要素を言葉で表現するのは難しく、また、説明の正しさは相手によって変える必要があると感じました。例えば、勉強会を実施する際、上司を説得する場合は、勉強会によって社員の負荷が増えないことを強調することが重要です。一方で、同僚を説得する際には、スキルアップなどのメリットを提示することが効果的です。これは、相手の課題を解決する要素を説得に使用する例です。 会話でどう説明すべき? 日々のミーティングでは、相手の前提を理解し、どのようなアプローチで説明すれば納得感を得られるかを考えながら会話を進めたいと思います。また、上司への提案時には、ピラミッドストラクチャーを使って根拠を明確に伝えることが重要です。 変革の価値は何? 他部署への方針変更の説明においては、変更の理由をしっかり伝え、どのような価値が相手に提供されるか、またどのようなメリットがあるかを示すことが大切です。新たなシステム導入時には、必ずオペレーションの変更が伴うため、その際の相手へのメリットを具体的な根拠を示して理解してもらうことが必要です。

クリティカルシンキング入門

振り返りから始まる新たな挑戦

思考力はどう育む? 知識のインプット、アウトプット、他者からのフィードバック、そして振り返りというサイクルが、成果に繋がる思考力を育む重要なプロセスであると改めて実感しました。普段の生活では意識的にクリティカルシンキングに取り組む動機付けが難しいですが、このトレーニングの繰り返しにより、当たり前のように思考結果をアウトプットできるようになりたいと思います。 修了は新たな出発? 本講座の修了はゴールではなく、むしろ新しいスタートラインに立ったと感じています。年間評価面談では、目標達成に至らなかったメンバーとも「イシューは何か」という視点で一緒に考え、今後の改善につなげたいと考えています。 問いはどう捉える? また、来期に向けては「問いを残す」ことと「問いの共有」を重視する予定です。組織として共通の「問い」を定めた後、課会で使用する資料の冒頭にテンプレートとして掲示し、毎回全員が確認できる仕組みづくりに取り組みます。 評価をどう見直す? まずは、自分自身の年間評価に対するイシューを検討します。強引に仮説を立て、必要なデータを集め、複数の切り口から結果を分析することで、来期には目標達成へ向けたしっかりとした下準備を整えていきます。

アカウンティング入門

B/Sで分かる経営の秘密

B/Sの新発見は何? B/Sについては、存在は知っていましたが、業務で具体的に使用することはなかったため、二面から財務状況を把握するという考え方が非常に新鮮でした。流動負債と固定負債という用語にも馴染みがなかったため、まずは自社の事業内容と照らし合わせながら、具体的な分類を再確認したいと感じました。また、業界ごとに資産や負債の比率が大きく異なる点にも驚きを覚え、今後各業界の適正な比率についてさらに学んでいく必要性を強く感じました。 借入状況はどう評価? 借入状況や使用用途が把握できることで、経営状態の健全性をより正確に評価できる資料であると感じました。このため、同業他社の比較やM&A先の企業の財務状況を確認する際にも有用だと思います。業界ごとに異なる資産や負債の比率を見極めながら、理解を深めていくことに大いに価値があると考えています。 自社B/Sの現状は? まずは、自社のB/Sについて、既に状況がある程度把握できている部分から検証を始めたいと思います。現金資産が豊富であると聞いている自社について、そのメリットやデメリットについても明確ではない現状から、資産や負債の内訳に伴うリスクなどを含め、総合的に理解を深めたいと考えています。

クリティカルシンキング入門

広がる視野、研ぎ澄む論理力

視点と広がりは? 「視点・視座・視野」を意識することの重要性を学びました。局所的な視点ではなく、幅広い価値観と視野の広さを追求することで、物事の捉え方がより深くなると感じています。 自分を客観的に? また、「もう一人の自分」という考え方を通じ、自分自身の意見や思考を客観的に見ることが大切だと実感しました。その結果、論理的に物事を整理し、効率的に考えるための手法としてロジックツリーの活用にも繋がりました。 論理思考の工夫は? 思考の瞬発力と持久力を高めることが、単に考えるだけでなく、論理的に考えるために必要なプロセスであると痛感しています。このスキルは、上司への報告・説明、部下への指示、会議でのプレゼンテーション、さらには企画書や議事録などの文章作成にも大いに役立つものです。 偏りを問い直す? 自分自身の考えが偏っている場合にこそ、「これは本当に良いのか」と自問し、鍛錬を続ける姿勢が重要です。同時に、他人の意見にもしっかり耳を傾け、異なる視点を尊重することも大切だと改めて感じました。 成長の実感は? グループワークを通じ、実際にこれらのスキルがどの程度実践できているかを確認し、更なる成長につなげていきたいと思います。

データ・アナリティクス入門

基礎に立ち返る学びの旅

基礎フレームワークは? 最終ライブ講義を受け、基礎的なフレームワークの重要性を改めて実感しました。Whyの部分で、ふと「なんだろうな」と考えた際に現れた「3C」という考え方に、久しぶりに強い衝撃を受けた気がします。立ち返ることの大切さを感じるとともに、復習の必要性も再確認しました。講義で学んだ内容は理解しているつもりでも、振り返ってみるととっさには出てこないことが多く、知識の定着には復習が不可欠であると感じました。 社員育成はどう? この体験をもとに、社員にも理解してもらえるような人材開発プログラムやリスキリング計画を進めていきたいと思います。これからは、属性ごとに細かく分析し、各軸を因数分解しながら、グラフ化して主張を整理する作業を習慣化していく予定です。 実践方法は何? また、社員教育や大学生向けインターンシップも行っているため、こうした分析や整理の方法を実践できるようになりたいと考えています。現在、ある大学との共同開発アプリに関しても、モニターからのアンケートを取得する際に、今回の学びを活かして注意深く実施していく必要があると感じました。 基本に立ち返る? 今後もフレームワークの基本に立ち返り、改めて見直していくつもりです。

クリティカルシンキング入門

小さな問い、大きな発見

問いはどう始める? 何かを考える第一歩は、まず「問いを立てる」ことです。その過程では、「問いから始める」「問いを残す」「問いを共有する」という3つのポイントが重要です。 問いの焦点は何? また、問いの妥当性を確認するためには、その問いが抽象的で広いのか、具体的で狭いのか、さらに原因寄りなのか打ち手寄りなのかを検討することが必要です。すぐに思いつく問いは具体的で打ち手に偏りやすく、その結果、導かれる解も狭く浅くなる傾向があります。したがって、まずは原因に着目した問いを立てることが大切です。 環境をどう読み解く? さらに、問いを立てる際には、現状の環境を分析し、目的を明確にするための情報整理が不可欠です。環境分析を通して、目標に向けた適切な問いが形成され、その問いを基により広い視野で問題にアプローチできるようになります。 仲間と問いを共有? 今後は、解決までのプロセスにおいて、自ら問いかけを繰り返しながら、立てた問いを協働する仲間と共有することを心がけたいと思います。業務においては説明責任も求められるため、今回学んだ思考のプロセスを継続的に実践し、言語化のスキルを磨くことで、無意識のうちに適切な問いを立てられる状態を目指していきます。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

ゴール重視からの脱却と新たな挑戦

場合に応じたゴール設定の重要性 業務において、MECE(Mutually Exclusive, Collectively Exhaustive)の原則は理解していたが、実際にはゴールを重視し過ぎていたことに気づかされました。また、What Where Why Howといったフレームワークも頭では理解していたものの、実際の活用がうまくできていなかったと反省しました。これにより、もれなく分析する難しさを改めて認識しました。 漏れのない分析方法とは? 私は業務プロセスの変革や改善のアセスメント、プロジェクト推進を担当しています。そのため、網羅的な影響の確認と、漏れのない分析が重要です。特に抽出する方法については慎重に整理し、誤ったアウトプットを防ぐことが必要であると再認識しました。 ヒアリングシートをどう改善する? ヒアリングシートについては、ロジックツリー化してテンプレートとして使用していましたが、これを見直すことにしました。具体的には、粒度の確認を行いながら、シートを整理することが重要だと考えています。そして、現状、あるべき姿、理想とする姿を正確に区分けすることで、段階的なスケジュールの精度を高め、プロジェクト推進につなげたいと思います。

マーケティング入門

ターゲティングで売上アップの秘訣を学ぶ

商品に対する受け入れ先をどう定義する? どんなに優れた技術を持っていても、その商品の受け入れ先が定義されていなければ、それは「絵に描いた餅」に過ぎません。「誰に売るか」を明確にするためには、顧客を多様な視点でセグメンテーションし、ターゲティングを行うことで差別化したポジションを確立することが重要です。これにより、売上の最大化につながることがよく理解できました。 ターゲット層をどう絞るべきか? 私たちの自社商品はヘルスケア関連であるため、健康に関心が高い一定の年齢層をセグメント化することが求められます。そのターゲティングを行うには、さらなる切り口が必要です。たとえば、健康に興味を持ち、お金を投じる傾向のある高所得層や、特定のライフスタイルを持つ層に焦点を当てるという仮説が考えられます。 データ分析で見えるギャップは? 過去の自社ソリューションの購買データを分析し、イメージしたターゲットとのずれがないかを確認します。もし乖離が見られる場合、その原因を追求しなければなりません。また、「健康への関心✖️高所得」以外の新たな訴求ポイントを会議で洗い出し、自社のポジショニングマップを作成します。これをもとに、来年度の営業戦略の立案に活用します。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。
AIコーチング導線バナー

「必要 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right