データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

数字のばらつきが描く成功のヒント

標準偏差の重要性は? 実績分析ではこれまで、平均値を求めることで状況を把握していましたが、標準偏差を算出してデータのばらつきを確認することはできていませんでした。課題解決に必要な問題の特定には、データのばらつきを捉えることが重要であると気づいたため、今後はまずデータ全体のばらつきを算出し、大まかな傾向を把握してから詳細な分析に取り掛かるようにしたいと思います。 エリア別売上の差は? また、営業実績の把握においては、従来は主に各時点の数値の差を比較する方法を採用してきました。今後は、売上が特定のエリアに偏っているかどうか、そしてその要因が何であるかをデータからしっかりと導き出すために、ばらつきにも注目しながら分析を進めていく考えです。

アカウンティング入門

数字が語る挑戦と成長の記録

お客様への価値提供は? 会社の事業活動は、何よりもまずお客様にいかに価値を提供できるかを考えることが基本です。単に物やサービスを作り出すだけでなく、他社との差別化も含めた活動が求められます。こうした事業活動を可視化したのが財務諸表であり、これを通じて企業の強みや弱みを分析するのがアカウンティングです。 将来に備える分析は? 現在、私はスポーツビジネスの業界で働いており、各クラブの財務状況を読み取り、分析することで現状を把握し、課題解決に取り組んでいきたいと考えています。また、財務諸表から事業活動を正確に読み取る力を身につけ、さらに様々な企業の分析にもチャレンジしていく所存です。

戦略思考入門

重ねた学びが生む戦略革新

繰り返し学習は効果ある? 今週は、6週間の学びを総振り返りする機会となりました。経営戦略のフレームワークの実践にあたっては、繰り返しの学習が重要であると改めて実感しました。また、差別化や捨てるという選択を行う際にも、分析力が求められることを再認識し、今後も反復学習に努めたいと考えています。 他部署の視点に挑む? 事業戦略に関わる部署として、実務的な数字分析や管理会計の作業はもちろん、経営戦略のフレームワークを活用して実際の分析に取り組む意欲を持っています。他部署とは異なる視点から、自社の強みを見出すため、より高い視座での分析を進めていきたいと思います。

アカウンティング入門

数字の裏に秘めた企業の想い

会計の多様な意図は? アカウンティングは単なる財務諸表の読み取りではなく、各企業がどのような目標を持ち、大切にしているかによって、同じ業種でも中身が大きく異なることを学びました。 部門理解は利益にどう響く? また、自分の会社だけでなく、事業部ごとに理解を深めることが重要であると感じています。そうすることで、各業務がどれほど利益に貢献しているかがより明確になるでしょう。現在は業務を効率的に進めることに努めていますが、これからは利益を生み出すことにこだわった仕事の進め方にシフトしていきたいと思います。

「数字 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right