データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

アカウンティング入門

数字に秘めた企業ストーリー

どんな価値を生む? 事業活動とは、①顧客に対して価値を提供し、②その価値を実現するために必要な活動を行い、③その結果として顧客から対価を得るというサイクルで構成されることを改めて整理できました。これまでは「売上や利益」といった結果面だけに注目していたため、財務諸表がこの価値創造プロセスを数字で表現している点に新たな発見がありました。数字だけでなく、企業がどのように価値を生み出し、どのように対価を受け取っているのかというストーリーとして企業活動を読み解く視点が重要だと感じました。 財務情報の謎は? また、投資先の経営状況や資金の使い方を正確に把握するためには、財務諸表の読み解きが不可欠です。今後は、決算資料を確認する際に売上や利益だけでなく、その背後にある事業活動の構造もしっかりと意識し、企業がどのように価値を創出し、利益を上げているのかを理解できるよう努めていきたいと思います。

アカウンティング入門

数字で見つける経営の物語

数字で見る変化は何? 数字から課題を読み解くことで、ビジネスモデルの改善に繋がる具体的な手法を理解できました。以前は無機質だと感じていた損益計算書が、実は有機的な活動の結果として表れていることに驚かされ、経済活動への興味が一層深まりました。 多角的比較は意欲? また、販管費率や売上原価の比較はもともと行っていたものの、他業種と相対的に見ることへの抵抗感が薄れました。特に海外展開している同業他社の各エリア別の業績比較を通して、国ごとの現状を詳しく分析してみたいという意欲が湧いてきました。 決算で理解を深める? さらに、公開されている各社の決算報告や自社の過去実績を再確認することで、より深い理解を得たいと考えるようになりました。加えて、決算報告をじっくりチェックする中で、気になる企業の株式購入も検討するようになり、普段の生活での視点に変化が生まれたと感じています。

アカウンティング入門

数字の裏側を探る経営レッスン

各社比較で何が分かる? 総合演習では、各社のP/LやB/Sを比較することで、各項目の割合が異なる理由を業界に照らし合わせながらイメージできるようになりました。また、同じ業界内でもどの部分に注力しているか、つまりアピールポイントが異なる点を改めて認識しました。 計画と現状はどう? 自身の事業についても、P/Lが正しく振り分けられているか確認してみたいと考えています。これまで新規リリースのタイミングでしかP/Lを作成していませんでしたが、当時の計画値と比較して現状がどのようになっているのか、また実際に儲けは出ているのかを確認していくつもりです。 内訳を見直すべき? 現在、事業で使用しているP/Lは単にテンプレ通りに入力しているだけで、納得感が得られていません。今後は、各内訳ごとにその項目がなぜ含まれているのかを正確に把握し、説得力のある説明ができるよう努めたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

アカウンティング入門

数字の向こうに広がる学びの世界

利益の要因は何? P/Lを分析する際には、まず財務の視点から利益を押し下げる要因が何かを明確にすることが重要です。具体的には、売上原価、販管費、営業外収益など、各項目がどのように利益に影響を与えているのかを検証しています。 ビジネス観はどう? また、単に数字を追いかけるだけではなく、自社のビジネスモデルや価値観と照らし合わせ、P/Lの内容がコンセプトに合致しているかどうかも考慮する必要があると理解しました。 変動を見るポイントは? 毎月、P/Lを確認する中で、一時的な大きな変動や長期的な傾向を把握することにも力を入れています。その上で、売上原価や販管費の構成が自社の理念に適しているかを詳細に分析しています。 意見交換の意義は? こうした分析結果をもとに、財務部門や経営層と意見交換を行うことで、より実践的な経営判断につなげることができると感じました。

アカウンティング入門

数字が紡ぐビジネスの物語

事業と数字の関係はどう? あるカフェの事例を通して、事業コンセプトや大切にしている価値観がPLの各数字にどのように影響するのか、その面白さを知ることができました。単なる数字の羅列ではなく、ビジネスの本質を読み解く上で、各項目が持つ意味に気付かされ、非常に興味深く感じました。また、コスト削減を安易に進めると、ビジネスの根幹であるコンセプトや大切にしたい価値を損ね、最終的には売上減少という結果を招く可能性があるため、慎重な検討が必要だと学びました。 自社との比較はどうなっている? 自社の事例に照らし合わせ、事業コンセプトや大切にしたい価値がPLのどの数字にどれほど影響しているかを改めて確認したいと考えています。そして、その数値が自社の目指す姿にどれほど近づいているかを把握し、もしギャップが見られる場合には、その解消に向けた施策の検討に取り組みたいと思います。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

「数字 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right