アカウンティング入門

未来を見据えるB/Sの新戦略

B/S活用はどう変わる? これまで、B/Sは「どれくらい資金を保有しているか」や「返済する必要がある資金の量」を中心に捉えていました。しかし、今後は自社ビジネスの成長のために、どのように資産を活用し、いかに資金を調達するかという将来像を描くためにもB/Sを活用できると実感しました。そのため、成功している同業他社のB/Sと比較し、自社の将来像を考察する必要があると考えています。 具体的には、以下の点が重要だと感じました。 将来の計画はどう考える? まず、自社の事業計画や資金調達計画を立てる際には、現状だけでなく将来を見据えた視点が欠かせません。現在の提供価値に加えて、将来的に求められる資産やその調達方法についても検討する必要があります。 成長戦略は何を学ぶ? また、これまでの業務では、過去の決算などの数値分析に重点を置いてきましたが、今後はこれらの数値を成長戦略に生かすため、将来志向のアプローチを取り入れたいと考えています。成長している企業や成功した企業が採用している戦略を学び、新たな技術やビジネスにも積極的に取り組む姿勢を持ちたいと思います。

クリティカルシンキング入門

データで見つける新たな視点

データ加工は何を示す? データの加工を通して、同じ情報源からでも新たな視点や気付きが得られることを学びました。数値を表からグラフに変換すると視覚的に変化が読み取れるほか、割合を算出することで傾向がより明確になると感じました。このような切り口の変化が、データ分析において非常に重要だと実感しています。 利用者傾向はどう把握? また、自社での活用例として、利用者の操作状況や休暇の傾向を表形式で把握し、グラフや割合に変換することで新たな洞察が得られると考えています。特に、曜日や週単位での分析を通して、月間で休暇が多くなる時期を見極め、それに対応する戦略を策定することが可能になると思いました。実際に、現在は休暇の傾向をカウントしているため、今後、グラフや割合を活用し、傾向と対策の検討を進める予定です。 分解切り口は有効? さらに、データを分解する切り口については、データの種類によっては既定のフレームワークのようなものがあるのかについても興味があります。どのような切り口が適用できるのかを知ることは、より効果的な分析を行うためのヒントになると感じています。

データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

戦略思考入門

差別化戦略で広がる可能性

差別化の出発点は何? 差別化を図る際は、まず「競合他社の幅広さ」や「ターゲットとなる顧客」といった前提条件を明確にすることの重要性を再認識しました。大きな差別化戦略であるコストリーダーシップを必ずしも実践する必要はないかもしれませんが、差別化や集中戦略は自社の戦略に十分応用できると感じています。 業界戦略はどう考える? 自身の業界に当てはめると、3つの戦略やVRIO分析といった枠組みは、現在の自分の立場よりも会社全体の戦略部や経営層に近い組織で判断されている印象です。単に方向性を示されるだけでなく、その判断に至る分析結果が説明されることで、より納得しやすくなります。なお、組織単位でVRIO分析を行った場合、その組織の強みは見えても、会社全体の最適な解決策とはならない点には注意が必要です。 どのような工夫がある? また、差別化を考える際に、先に答えを思い浮かべ、その答えを補強するために優位な競合や顧客情報を並べる傾向があります。経験則から出る直感自体は否定しませんが、視野が狭くならないよう、どのように工夫しているのかを考える必要を感じました。

アカウンティング入門

ビジネスモデル理解が広がる!学び放題の魅力

多様なビジネスモデルを学ぶには? これまでの実践演習や授業での演習を通じて、さまざまな業種や業態のアカウンティングからビジネスモデルを考えることができました。特に、製造業だけでは考えにくいサービスビジネスモデルを、共に受講した方々の視点や発想を取り入れることで理解する助けとなりました。ライブ授業はやはり楽しいです。 学んだ知識をどう活用する? 現在、会社組織の目標設定を考えていますが、これまで学んだことを活かしている一方で、まだ十分ではないとも感じています。そのため、P/L、B/S、C/Fといった知識を駆使し、引き出しを開けるようにしながら問題を解決していきたいと考えています。 知識を定着させるには? もちろん、業務内で学んだことを使っていくことは当然のことです。しかし、業務だけでは分からないことがあるため、学習を深掘りして継続する必要があります。また、知識が消えていかないように、定期的に基礎知識に触れることも重要です。これが最も難しい部分だと思いますが、学び放題の永年プランを契約しているので、毎日短時間でも動画学習を続けていくつもりです。

クリティカルシンキング入門

クリティカルシンキングが変える仕事のアプローチ

クリティカルシンキングを再評価するには? 改めて「クリティカルシンキング」とは何かということと、「問いから考え始める」ことの重要性を学ぶことができました。私にとっての「クリティカルシンキング」とは、「問いと打ち手(根拠と主張)」だと現在は考えています。物事を考え始める際は、必ず「何の答えが必要なのか」を問いという形で置いてから思考を始めていきたいです。 問いを立てる場面での有効性とは? 問いを立てることが必要な場面は多々ありますが、特にクライアントや社会課題の解決策を考える場面で役に立つと考えています。具体的には、応募の集まっていない企業への母集団形成案を考える際や、その打ち手として企業の年間休日がネックとなっている場合の人の動かし方を考えるときなどです。 定量的な問いで現状分析を深めるには? 漠然と「この企業の採用成功をするにはどうしたらよいか」と考えるのではなく、「この企業の年間休日を120日にするにはどうしたらよいか」や「この企業の応募者数を月5人多くするにはどうしたらよいか」と定量的な問いを立てたうえで現状分析をしていきたいです。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

具体と抽象で開く成長の扉

具体と抽象の大切さは? 具体と抽象の両面を行き来することの重要性を実感しました。議論が進む中で、つい具体的な部分に深堀りしすぎてしまい、視野が狭くなることがあると痛感しました。まずは何を解決したいのかという問題意識を持ち、その上で立ち止まる勇気が大切だと感じています。 掘り下げ不足は大丈夫? システム開発会社からの技術派遣ニーズのヒアリングでは、一見、案件内容や必要なスキルがテキストで整理されているため、手軽に内容を把握できる反面、それ以上の掘り下げをしなくなりがちだと感じました。これは、お客様側が要件のすり合わせを完璧に行っているという前提に陥りやすいことに起因しています。そのままの形で提案を進めると、結果としてコスト競争に陥り、収益性に悪影響を及ぼす可能性があるため、いただいたご依頼をそのまま受け取るのではなく、解決すべき課題の優先順位を合意の上で整理し、当社独自の提案へとつなげていきたいと考えています。 最適解はどこに? また、VUCA時代と呼ばれる現在において、何をもって最適解とするかの定義を明確にすることが難しいと感じています。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

戦略思考入門

業務の効率化は「やらないこと」で決まる

優先順位付けの重要性とは? リソースは有限であり、戦略的に物事を進めるためには優先順位をつけることが重要であると理解しました。何をやり、何を捨てるのかを決めるには、判断基準を設ける必要があります。特に、投資対効果を算出することが一つのポイントです。根拠のある判断基準があれば、後ろ向きな印象のある「やらない/捨てる」という決断も納得感を持って周囲に説明できるとわかりました。 実証実験での課題は? 現在の業務において、「何をやらないか」を決められないことが大きな課題だと感じています。特に実証実験を始める際、規模や検証すべき内容(今回は何を検証しないのか)を明確にすることが、有限なリソースを効率的に活用し、仮説検証の精度を高めるために役立ちます。 効果的な仮説検証の進め方 これからは、各フィールドで進める実証実験の目的を明確にし、検証すべき仮説を見直していきます。チームで検証すべき仮説を洗い出し、どの仮説を優先して検証するかをグループ会議で議論します。また、担当フィールドで想定している開発機能も、その優先順位に基づいて絞り込んでいく予定です。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。
AIコーチング導線バナー

「現在」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right