データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

アカウンティング入門

BSとPLの視点から見る投資戦略

BSの構成理解と実践適用 BS(貸借対照表)の全体構成を理解することができました。事例として取り上げられたカフェのビジネスを通じて、自分の資金や他人から集めた資金をどのようにして自身のコンセプトに必要なものを集めるかについて学びました。他人から借りる場合には、そのリスクをよく考慮したうえで借りる必要があることも学習しました。また、PL(損益計算書)に続き、BSにおいてもコンセプトを意識することの重要性を実感しました。 自社のBS分析で得られる知見 現在の業務では、他社分析の場面で今回の学びを活用したいと考えています。これまで学んできたPLでは、利益を出すために何が必要であるかを学びましたが、それをBSの視点からどのような投資を行うべきかにつなげて考えることができれば良いと思います。 まずは、自社のBSを分析してみる予定です。その上で、自社がどのように資金を準備し、中期計画で公表しているプランに対してどのような投資や準備を進めているのかを分析してみたいです。さらには、より良い改善を実現するために、どのような手段を講じるべきかについても考えていきたいです。

データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

アカウンティング入門

ビジネスモデル理解が広がる!学び放題の魅力

多様なビジネスモデルを学ぶには? これまでの実践演習や授業での演習を通じて、さまざまな業種や業態のアカウンティングからビジネスモデルを考えることができました。特に、製造業だけでは考えにくいサービスビジネスモデルを、共に受講した方々の視点や発想を取り入れることで理解する助けとなりました。ライブ授業はやはり楽しいです。 学んだ知識をどう活用する? 現在、会社組織の目標設定を考えていますが、これまで学んだことを活かしている一方で、まだ十分ではないとも感じています。そのため、P/L、B/S、C/Fといった知識を駆使し、引き出しを開けるようにしながら問題を解決していきたいと考えています。 知識を定着させるには? もちろん、業務内で学んだことを使っていくことは当然のことです。しかし、業務だけでは分からないことがあるため、学習を深掘りして継続する必要があります。また、知識が消えていかないように、定期的に基礎知識に触れることも重要です。これが最も難しい部分だと思いますが、学び放題の永年プランを契約しているので、毎日短時間でも動画学習を続けていくつもりです。

クリティカルシンキング入門

クリティカルシンキングが変える仕事のアプローチ

クリティカルシンキングを再評価するには? 改めて「クリティカルシンキング」とは何かということと、「問いから考え始める」ことの重要性を学ぶことができました。私にとっての「クリティカルシンキング」とは、「問いと打ち手(根拠と主張)」だと現在は考えています。物事を考え始める際は、必ず「何の答えが必要なのか」を問いという形で置いてから思考を始めていきたいです。 問いを立てる場面での有効性とは? 問いを立てることが必要な場面は多々ありますが、特にクライアントや社会課題の解決策を考える場面で役に立つと考えています。具体的には、応募の集まっていない企業への母集団形成案を考える際や、その打ち手として企業の年間休日がネックとなっている場合の人の動かし方を考えるときなどです。 定量的な問いで現状分析を深めるには? 漠然と「この企業の採用成功をするにはどうしたらよいか」と考えるのではなく、「この企業の年間休日を120日にするにはどうしたらよいか」や「この企業の応募者数を月5人多くするにはどうしたらよいか」と定量的な問いを立てたうえで現状分析をしていきたいです。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

戦略思考入門

業務の効率化は「やらないこと」で決まる

優先順位付けの重要性とは? リソースは有限であり、戦略的に物事を進めるためには優先順位をつけることが重要であると理解しました。何をやり、何を捨てるのかを決めるには、判断基準を設ける必要があります。特に、投資対効果を算出することが一つのポイントです。根拠のある判断基準があれば、後ろ向きな印象のある「やらない/捨てる」という決断も納得感を持って周囲に説明できるとわかりました。 実証実験での課題は? 現在の業務において、「何をやらないか」を決められないことが大きな課題だと感じています。特に実証実験を始める際、規模や検証すべき内容(今回は何を検証しないのか)を明確にすることが、有限なリソースを効率的に活用し、仮説検証の精度を高めるために役立ちます。 効果的な仮説検証の進め方 これからは、各フィールドで進める実証実験の目的を明確にし、検証すべき仮説を見直していきます。チームで検証すべき仮説を洗い出し、どの仮説を優先して検証するかをグループ会議で議論します。また、担当フィールドで想定している開発機能も、その優先順位に基づいて絞り込んでいく予定です。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

リーダーシップ・キャリアビジョン入門

対話で拓く変革リーダー

コミュニケーションはどう? 総合演習では、仕事の中で都度コミュニケーションを図ることの重要性を改めて実感しました。今後も、チームで取り組む際にはしっかりと話し合い、認識を合わせながら進めていきたいと感じています。 変革の意識はどう? キャリアについて振り返ると、これまでの業務の中で結果を出し、「自分が何かを変える」という意識を大切にしてきたと実感しています。前任のやり方にただ従うだけでなく、自ら爪痕を残し、良い意味で目立つことにこだわる性格だと感じています。 リーダーの対話はどう? また、リーダーシップにおけるコミュニケーションは、現部署や全社プロジェクトにおいても大いに活用できると考えています。これまで意識して行動してきた部分もありますが、これからも引き続き積極的にコミュニケーションを図る努力を続けていきたいと思います。 新部署での挑戦は? 現在、ある部署で働き始めたばかりですが、今までの経験を活かし、様々なアイデアを出して行動に移すことで、「自分が変えてきた」という成果をたくさん生み出していきたいと考えています。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

「現在」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right