データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

マーケティング入門

仮説と実践を学び自己成長へ

マーケティングの基本概念を知る マーケティングとは、広告宣伝や販売促進といった具体的な行動のアウトプットに留まらない、より広い概念です。社会全体にとって価値のある提供物を、「創造」「伝達」「配達」「交換」する活動やプロセスを指します。販売の必要性をなくし、顧客が自然に買いたいと思う仕組みを作ること、これが「顧客志向」です。マーケティングの視点では、製品主体のセリングとは異なり、顧客ニーズを始点に顧客満足をゴールとしています。 顧客に魅力を伝える方法は? 自己の商品や自分自身の魅力を顧客にきちんと伝え、相手が自社の商品に魅力を感じることが重要です。ヒット商品にも注目し、その裏側にある成功要因を学ぶことが大切です。 仮説を立てる重要性を学ぶ 今週の学びを通して感じたことが二つあります。一つ目は「仮説を立てること」です。LIVE授業で「仮説を立てる」という話がありましたが、マーケティングの実践では、初めに正しい理論や数字を元にした仮説を立て、その仮説をしっかりと言語化することが大切だと感じました。 PDCAサイクルをどう活用する? 二つ目は「実践すること」、そして「組織で実践すること」です。これもLIVE授業で触れられた内容ですが、ただ仕組みを作るだけでなく、PDCAサイクルを回して精度やスピードを上げることが重要であると再確認しました。 営業活動にどう反映する? 営業活動では、営業戦略の策定や広告宣伝・販売促進を考える際に活用できます。また、バックオフィスの領域でも、顧客や他部署に業務提案する際に役立ちます。マーケティングに基づき、裏付けされた内容でPDCAを回し、限られたリソースを最適に活用し、結果に結びつけることが求められます。上司や同僚、部下に伝えることも重要です。 学んだ知識を如何に活かすか? このナノ単科を主体的に受講し、学んだ知識を仕事に取り入れて実践することで、自己成長につなげていきたいと考えています。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

戦略思考入門

捨てる思考でサービス改善!顧客満足度を再定義

捨てる意味は何? 一番印象に残ったのは、捨てることで顧客のメリットが向上する可能性があるという点でした。なぜなら、これまでは捨てるという行為を、新しい価値を創造するために人や時間を作ることや、コストダウンを目的としたものと捉えていたため、顧客のメリットが上がるという発想はあまりありませんでした。この点から、自分たちの核となるサービスを充実させるために、あくまでお客様のためではなく自分たちのために行っていることがないのかという視点で戦略を再考し、これに活用したいと考えています。また、選択・捨てるときには、定量的な判断基準が必要であり、それによってより客観的な判断ができると感じました。そして、結果を振り返り、さらに必要なアクションをとるためにも、この基準が重要であることを強く認識しました。 対応中止の判断は? 私たちは営業社員向けのコールセンターを運営し、「問合せ対応」と「手続きの受付対応」をサービスの柱としています。これまでは営業社員の満足度を意識して両方を提供していましたが、本当に顧客が望んでいるものを定義し、ROIを考慮した上で「手続きの受付対応」の中止を検討しています。判断基準として、手続き一件当たりの生産性や、顧客の想定通りに手続きが正しく行われるリスク、電話受付以外の代替手段の有無を検討項目としています。 問合せ対応の優先は? さらに、問合せについても待たせることが多いため、つながりやすさを重視して優先順位を設定します。判断基準としては、コンタクトリーズンごとの問合せ量の割合と、営業活動における優先順位の有無を考慮していきます。まずは、優先順位を考える上で基準となる項目を洗い出します。具体的には、サービスの対象者が期待していること、手続き一件当たりのコスト、一回の電話で解決する割合、問合せの応答時間、後処理の時間などです。これらの基準項目を「効果」と「頻度」のマトリクスとして分析し、捨てるべきことを明確にしていきます。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

戦略思考入門

捨てるか残すか心の羅針盤

捨て選びの難しさは? 「捨てること」と「選ぶこと」は、両立が難しいものの、時には顧客満足につながるという視点が印象的でした。 動物排除の効果は? 特に、シルクドソレイユの事例では、動物を排除することで臭いや飼育の制約をなくし、場所の自由度や演出の幅を広げた点に納得感があり、興味深く感じました。 捨て基準は明確? また、不要なものを捨てる際には、判断基準を明確にすることが不可欠であると実感しました。内部の関係者に対しても、「このトレードオフをこう評価した結果、捨てる決定をした」といった論理的な説明が求められると感じます。 最適バランスは? トレードオフの局面では、効用の最大化や最適なバランス(スウィートスポット)の把握が重要であり、場合によっては思い切った集中投資も有効だと学びました。 業務整理は進んで? 現在、仕事の面では、不要な業務を切る・他者に委譲する取り組みが既に実践できており、改善すべき点は大きくないと感じています。一方で、プライベートでは、音楽用品やキャンプ用品の増加により部屋が散らかっており、家の片づけが課題です。 感覚基準はどう? コンマリ式のように「きゅんときたか」という感覚的基準も取り入れながら、明確な判断基準を設定して整理を進める必要があると考えています。また、仕事と家事では判断プロセスが異なる可能性があるため、それぞれに応じた捨てる基準の構築が求められます。 資源活用は難しい? さらに、「不要に見える機能や資源を捨てること」と「既存の資源を組み合わせて活かすブリコラージュ的発想」をどう両立させるかが問われています。捨てる際に将来のブリコラージュ素材まで切り捨ててしまうリスクや、温存しすぎて複雑性やコストが膨らむリスクに対する評価、そして「残す価値がある」と判断する基準に利益や効率以外の要素をどのように盛り込むか、今後の課題として意識しております。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

デザイン思考入門

顧客に寄り添う心に響く学び

顧客中心の真意は? デザイン思考の根本は「どこまでも顧客に関わろうとする人間中心」であることを理解しました。その特性から、仮説検証や分析に偏ったアプローチと比べると、ビジネスシーンでは特定の顧客に限定されたサービスや商品に偏りがちになるのではないかという懸念もあります。しかし、市場環境を考えると、初めから万人ウケするものを作るのはほぼ不可能であり、結果として「当たり障りのない、誰にもハマらないもの」に陥ってしまう恐れがあります。データや数値だけでは本当に解決すべき課題にたどり着くことはできず、市場拡大の基本としてアーリーアダプターを捉えることが重要だと考えています。 本質課題は何か? このような背景から、ヒット商品やヒットサービスを生み出すためには、まず具体的なペルソナを設定し、相手を深く知り、共感することから顧客の本質課題を発掘する必要があると考えました。さらに、課題解決に向けた柔軟な発想へとつなげられるのではないかという見方を得ました。 どこで成長する? この講座を通しては、①顧客の本質課題を引き出す手法、②相手への共感とその伝え方、③プロダクトの具体化に向けたビジュアル化の手法という3点を重点的に学んでいきたいと思っています。担当している商品の拡販戦略を検討する際には、顧客課題をより深く理解し、それをメッセージ作りに反映させること、そして顧客に寄り添い共感を伝えるコミュニケーションを心掛けたいと考えています。「当たり障りない」から脱却し、具体的なペルソナを通じて本質課題を引き出すことを目指します。 直近の実践は如何に? また、学んだスキルやフレームワークは、現状担当している社内研修の企画にも積極的に取り入れ、実践していく予定です。直近では顧客ヒアリングの機会があるため、講座で学んだことをすぐに生かし、次年度の実行計画策定の際にもデザイン思考のアプローチを意識して活用していきたいと思います。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

戦略思考入門

ROIで学ぶ!経営資源の効果的活用法

何を学んだ? 今週は、これまでの学びを整理し、各週の要点を再確認することに集中しました。以下は、特に自分にとって重要だと感じた部分をまとめたものです。 どう活用する? まず、自社や自身の優れた経営資源を分析し、理解することは重要であり、状況に応じてそれらをどのように活用するかを考える視点が不可欠です。また、個人のリソースには限りがあるため、やることと捨てることの優先順位をつける必要があると再認識しました。惰性で業務を進めるのではなく、判断基準を持ちながら考えることが求められます。そのためには、定量的なエビデンスに基づき、さらにROI(投資対効果)を考慮する重要性に気づきました。 視野を広げるには? さらに、自身の視野狭窄や見落としを防ぐためには、集合知を意識して他者と相談し、意見をすり合わせることが大切です。 現部署の取組みは? 現部署では、既存業務の効率化・高品質化を目的としています。また、新規業務の構築やフロー作成にも関わる機会があり、それぞれに適切な目的や目標設定が必要です。日々のMTや資料作成時にはFWを活用できます。 助けを求めるには? 個人での業務には限界があるため、大きな成果を達成するには周囲の助けが必須です。その際、伝えるべき情報を正確に伝え、納得感や理解を得るには、FWを活用した情報整理やKSF(重要成功要因)や課題の特定、戦略立案が不可欠だと感じました。 新知識の収集は? 新規業務の担当窓口に任命されましたが、未知の業界であるため、新たな知識・スキルを収集し続け、現状の業務フローを理解する必要があります。3C分析を中心に使用して理解度を深め、顧客の潜在ニーズや課題を抽出することを目指します。 習慣化はどうする? 活用方法やタイミングについてはまだ慣れていないため、自分のスタイルを見つけるべく、地道に繰り返し実践して習慣化する努力を続けます。

「顧客 × 客」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right