データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

マーケティング入門

軸で切り拓く未来の可能性

どんな軸が効果的? ある企業の事例から、商品の仕様を変えることなく新たなターゲットに訴求する際、商品の特徴の中から二つの軸を特定し、ポジショニングマップを検討することが、他社との差別化や自社の強みにつながると学びました。 商品名の魅力は何? また、商品名が持つユーモアや分かりやすさも、商品やサービスの開発において非常に重要であり、場合によっては改名を検討することでターゲットの幅が広がり、売上向上の効果が期待できるという点も印象に残りました。 イベント名はどう響く? 毎年開催している同様のイベントにおいて、イベントタイトルやキャンペーン名称が結果や反響に大きな影響を与えていることを体感しており、企業として二つの軸を十分に考慮し、優位性と顧客からの共感を得られるポジショニングマップを基に企画を打ち出していく必要性を感じました。 顧客の興味は何? さらに、自社が伝えたい魅力や強みだけにこだわるのではなく、顧客が何に興味を持つかという視点を持つことが重要であると考えています。 STPをどう生かす? 加えて、施策ごとにSTP(セグメンテーション、ターゲティング、ポジショニング)を丁寧に実施すること、そして現有のデータだけに頼らず、フレームワークを活用して新しい市場の可能性を探る必要性も強く感じました。また、ターゲティングの評価基準を言語化しながらターゲット選定を行うことによって、運営の質を向上させていきたいと考えています。

クリティカルシンキング入門

数字分析で見えた新たな視点の発見

数字の見方を再考しましたか? 数字を見たとき、なんとなく自分なりの答えを出して、その答えに合うような分析をしているのではないかと思うことがあります。しかし、実際にグラフ化したり、さまざまな切り口から数字を分解すると、全く違った見え方をすることがあります。この体験から、自分にはそのような癖がついていると反省しました。 固定観念をどう破る? 業績やマーケティングの結果を分析する際に、この経験を活かせると感じました。売上が下がっているときに、「人手不足だから」や「閑散期だから」といった固定観念に基づいて数値を分析していることに気づきました。後から振り返ると、本当の原因は他にあったのではないかと思うことがあります。そこで、切り分け方や見せ方を工夫し、より根拠のある分析を行い、業績向上と改善行動につなげていきたいと考えました。 分析スキルの向上方法 数字を切り分けるためのスキルを身につけたいと思います。与えられた数字だけでなく、分析におけるフレームワークを学び、実務で活用できるようになりたいです。 価格設定で何を意識する? 今後、自社で運営している宿泊施設の価格設定業務において競合分析・自社分析を活用していきたいと考えています。さまざまな要因を分析し、一室あたりの価格を設定していますが、これまでは根拠が曖昧でした。今後は、より細かく根拠を持った価格調整を行い、顧客満足度を下げることなく、単価を上げていけるようにしたいと思います。

マーケティング入門

事例で魅せる!狙い撃ちの価値創造

提供価値はどう見える? マーケティングの基礎として、誰にどんな価値を提供するのか、そしてどのように魅せるのかを事例を通してしっかりと振り返ることができました。 反応をどう捉える? 実際に商品を発売した後、狙ったターゲット層とは異なる層に受け入れられたケースや、商品の内容を変更せずに名前を変えただけで売上が伸びた事例、またユーザーの口コミから商品の予想外の魅力が伝わったケースなど、様々な現象を目の当たりにしました。こうした事例を通じて、発売後も「顧客はどう反応しているのか?その背景は何か?」といった視点で、Who、What、Howを見直す重要性を再認識しました。 ターゲットは誰? すべての顧客に満足してもらおうとするのではなく、「誰に」焦点を絞ってターゲット層を考えることで、より刺さる価値を創造できると感じました。時間やマンパワー、コストなどの資源が限られている中で、「売上を上げる」というゴールに対して、どのターゲットにどのような価値を提供するのが最も効果的かを考えることが大切だと思います。 戦略の優先順位は? 顧客層をセグメント化し、優先順位の高いターゲットを明確に定めることで、ターゲット層のニーズやインサイトを深掘りできました。その後、メンバーと共にアイデア出しを行い、具体的な施策を検討し実行するプロセスは、セールスやカスタマーサクセス、マーケティングなどさまざまな分野で応用できると実感しました。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

マーケティング入門

模索からひらめいた普及のヒント

普及要因はどう伝える? 新しい商品や既存商品を市場に出す際、普及要因を意識する大切さを学びました。以前は、新規コンテンツ開発時に商品のコンセプト、使ってほしいという意図、製作の背景や体験の機会などを提供していましたが、結果としては無秩序に発信し、試行錯誤を繰り返す方法に陥っていました。 B2B2C戦略は何か? 私の所属する企業はB2B2Cのビジネスモデルを採用しており、直接伝えられるBと、Bを通してサービスを利用するCに対して、それぞれどのようにPRすべきかを切り分けて考える必要性を実感しました。 訴求点はどこ? また、自社のコンテンツPRや広報物を作成する際に、イノベーションの普及要因を参考にすることで、どの要因から訴求すれば顧客にとって理解しやすいのか、伝えるべきポイントを明確にできると考えています。特にこの春、新しいコンテンツをリリースしたばかりのため、販売をさらに加速させるためのPR方法や新たな機会の創出についても検討中です。 売上理由を探る? さらに、新規および既存コンテンツが売れている理由、または顧客に響いていない理由を整理することで、アップセルやクロスセルに結びつく要素がないかを見極める狙いがあります。加えて、信頼関係のある企業が手がけるエドテックやICTコンテンツにおいても、成功の要因や逆に売上が落ち込んだ理由を分析し、今後の改善策を模索していきたいと考えています。

マーケティング入門

マーケティングの本質を学んで売上アップへ

マーケティングの魅力と怖さ どんなに良いものを作ったとしても、顧客の心理をついた魅せ方にしなければ、いまいちな売れ行きになることがある。これがマーケティングの面白い部分でもあり、怖い部分であると感じた。カレーメシの例題を通じて、イノベーションの普及要件について分かりやすく理解することができた。今後、新商品のアイディアを考える際には、これらの要件に当てはめてみて判断していきたい。 顧客視点の重要性とは? また、差別化の罠にはまり、競合ばかりを意識してしまうことがよくあるが、自身もそうなりがちだと思った。これを防ぐためには、今一度顧客視点で見る意識を持ち続けたいと思う。 アイディアをどう高める? 新商品や新技術のアイディアを考える際に、顧客心理をついた視点を入れることで、より確度を高めることができる。また、商品開発におけるマーケティング部とのやりとりの際も、魅せ方を考慮した上での協議や提案が可能となり、ヒット商品を生み出す可能性が高まるだろう。 ヒットの条件を探るには? 過去に自社製品で販売したものの中から、ヒットしたものやあまりヒットしなかったものをそれぞれ抽出し、普及要件に合致していたか確認してみる。また、どのような魅せ方であればヒットする可能性があったのかについても検討してみる。そのほか、ネットショッピングで売れていない商品を見つけ、なぜ売れていないのかについても深掘りしてみる。

アカウンティング入門

顧客を読み解く会計の視点

エンタメ価値はどこ? オリエンタルランドのケーススタディを通じて、エンターテインメント企業ならではの事業内容や顧客への提供価値を踏まえた資産の保有方法、経費の計上方法について学びました。特に、キャストの人件費が売上原価に含まれている点が非常に興味深かったです。 会計をどう理解? 初回授業で「アカウンティングはわかりやすく説明するためのもの」と学んだ経験がありますが、会計数値を読み解くにはまず顧客への提供価値に目を向け、その後「活動・資源・資金」といった観点から情報をブレイクダウンすることで、企業が伝えたい意図を正しく理解できると実感しました。 新企画のヒントは? 次年度の企画立案の際には、Week6と同様に競合以外の異業種のPLやBSを参考にすることで、新たなビジネスモデルの発想の可能性を感じています。既存のビジネスモデルにとらわれず、自社に生かせるアイデアや収益性の高い仕組みを創出したいと考えています。 情報共有で進化する? また、決算発表資料などを参考に他社の会計情報を積極的に確認し、競合以外の異業種のPLやBSに目を通すことも今後の取り組みの一つです。さらに、社内の若手メンバーを中心に財務諸表3種の違いについて情報を共有する場を設け、グループごとに異業種の事例を検討しながらブレインストーミングを行うことで、新しいビジネスモデルの種を探していく予定です。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

振り返りが生む未来の一歩

問題発生の理由は? 問題が起きた際には、何が問題でどこで起きているのかを順序立てて考える必要性を改めて実感しました。問題を一方的に決めつけ、頭の中だけで解決策をブレインストーミングしても、生産性の高い解決策には結びつかないと感じています。 売上目標の突破は? 売上目標をいつまでにどこまで伸ばすかという課題に常に直面している中で、担当先ごとの「あるべき姿」や「ありたい姿」を考え、現状とのギャップを整理しています。TG顧客の特定や製品価値の十分な伝達について、MECEの視点で問題を洗い出し、短期間での対応が必要なものと一定期間をかけるものに分け、各アプローチを検討しています。これらを定量的に把握することで、説得力のある対策が実現できると確信し、短期間でPDCAサイクルを回しながら自分の行動を検証し、精度を高める重要性を学びました。 現状改善の策は? 担当先においては、あるべき姿やありたい姿を明確に定義し、現状との差を数値で捉えることで現実的な対策を構築しています。あるべきマーケットシェアに到達するために、どこを重点的に攻略するのか、どれだけの顧客に製品価値を理解してもらい、利用していただく必要があるのかを定量的に示すことで、実現可能な戦略となると考えています。また、毎週の振り返りを通じて、翌週には具体的な行動の改善を図っていきたいと思います。

「顧客 × 売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right