デザイン思考入門

アイデアの花咲くコラボ術

仲間の意見はどう感じる? 他の受講生の発表を拝見し、短期間でこれほど多彩なアイデアが生まれるのかと驚くと同時に、さらに洗練されたフィードバックの重要性を実感しました。個々のセンスだけでなく、複数人でのコラボレーションやコミュニケーションが、成果物に大きな影響を与えることを改めて認識しました。 デザイン思考で何得る? また、デザイン思考は新製品やサービスの開発に留まらず、決まった答えが存在しない業務課題の解決にも効果的だと感じます。たとえば、最新の技術を既存業務に融合させるプロジェクトにおいて、ユーザーへの共感をスタートに試作とフィードバックを繰り返すプロセスは、従来の単純な試行錯誤に比べ、確実な成果を生むと確信しました。 ユーザー声、どう活かす? さらに、新しいプロジェクトを始動する際には、漠然とした計画やスケジュールだけでキックオフするのではなく、まずユーザーの声や抱える課題に全体の意識を向けることが重要だと考えています。解決すべき明確な目標をチーム全員で共有することで、各活動の一貫性を高め、より良い成果につなげていきたいと思います。

データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

クリティカルシンキング入門

課題解決力を高めるシンプルな秘訣

課題をどう見極める? 問題や課題、論点を明確にしておくことの重要性を改めて感じました。同時に、課題の優先順位をつけることや、課題を設定することの難しさも実感しています。責任のある立場として、課題を見極める判断力や、その迅速な対応力、そして判断センスが求められます。 イシュー表示は有効? また、ホワイトボードやパワーポイントの左上に常にイシューを表示しておくと議論が脱線せずに進行できると思います。イシューという言葉自体は英語で理解しにくい人もいるかもしれないので、問題や課題、論点、目的など、会議やミーティングで全員が理解しやすい言葉に置き換えるべきだと考えています。 意図の確認はどう? さらに、自分が話す時だけでなく、上司や同僚、部下から何らかの問題や課題の依頼があった場合にも、本質的な意図をしっかりと確認するよう心掛けたいと思います。お互いに誤解のないコミュニケーションを取ることができれば、様々なことが噛み合い、より良いワークライフを築けるでしょう。会社全体で課題の判断や解決策のアイデア出しを楽しんで行えるようにすることを目指します。

リーダーシップ・キャリアビジョン入門

対話で拓く変革リーダー

コミュニケーションはどう? 総合演習では、仕事の中で都度コミュニケーションを図ることの重要性を改めて実感しました。今後も、チームで取り組む際にはしっかりと話し合い、認識を合わせながら進めていきたいと感じています。 変革の意識はどう? キャリアについて振り返ると、これまでの業務の中で結果を出し、「自分が何かを変える」という意識を大切にしてきたと実感しています。前任のやり方にただ従うだけでなく、自ら爪痕を残し、良い意味で目立つことにこだわる性格だと感じています。 リーダーの対話はどう? また、リーダーシップにおけるコミュニケーションは、現部署や全社プロジェクトにおいても大いに活用できると考えています。これまで意識して行動してきた部分もありますが、これからも引き続き積極的にコミュニケーションを図る努力を続けていきたいと思います。 新部署での挑戦は? 現在、ある部署で働き始めたばかりですが、今までの経験を活かし、様々なアイデアを出して行動に移すことで、「自分が変えてきた」という成果をたくさん生み出していきたいと考えています。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

クリティカルシンキング入門

問い続ける先に未来がある

本当にそれでよい? Week1からWeek6までの学習を通して、物事の考え方の基礎となるクリティカルシンキングを学びました。自分自身に対して「本当にそれでいいのか」と問い続けることの大切さを実感し、その経験が、自分の思考の癖を改善し、イシューに正しく向き合う力へとつながったと感じています。 真のニーズは? また、営業職として日々活動する中で、相手が何を考え、何を求めているのか、真のニーズは何であるのかを常に探ることは、自分が取り得る手段を増やし、結果にも現れると考えています。加えて、営業以外の新たな役割を担う中で、直面する課題に対しては失敗を恐れず、試行錯誤を重ねながら前進していきたいと思います。 疑問を共有する? 繰り返しになりますが、問い続けることが何よりも大切です。自分が発信する問いを仲間と共有することで、より良いものを生み出せると信じています。どんなに些細な疑問であっても、相手の質問意図を正確に捉えるために、自分の考えが本当に正しい解答であるのかを批判的に自問自答しながら、学びを深めていきたいと思います。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

「良い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right