データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

クリティカルシンキング入門

コミュニケーション術で説得力アップ!

説明は本当に伝わる? 相手に説明する際に、伝わっていないと感じることが多くありました。これまで、その理由について深く考えることはありませんでしたが、今回の講義を通じて様々な要因に気づきました。例えば、論理の飛躍や理由が適切でないことなどが挙げられます。今後は、ピラミッドストラクチャーやロジックツリーを活用し、相手の立場で必要な要素が抜け漏れていないかを確認した上で、論を立てていきたいと思います。 上司は何を求める? 企画承認会で上司に承認を得る際には、必要な観点が抜け漏れていないか、ピラミッドストラクチャーを使って確認しようと思います。 話を聞く心得は? また、相手の話を聞く際にも、自分が伝える側だけでなく、意見を求められる機会が多々あります。その際、聞いた話に論理の飛躍がないか、理由が適切か、といった視点を持ちながら意見を受け止めていきたいと考えています。 メール伝達の秘訣は? 情報共有のためにメールをまとめて発信する機会が頻繁にあります。その際には、相手にとって必要な情報が的確に伝わるような文書を作成するよう心掛けます。 年末総括の評価は? さらに、年末に向けた総括資料の作成では、担当する業務領域のプロモーション計画が適切であったか、あるいは効果があったかを総括する必要があります。前回の講義で学んだデータ活用法と、今回学んだ文章のポイントを踏まえ、相手に伝わる表現を洗練させたいと思います。

クリティカルシンキング入門

思考を深める「問いかけ」の力

なぜ問いは必要? この講座を通じて、問を立てることの重要性や、そのための考え方を学びましたが、「なぜ問の形にする必要があるのか?」については深く考えたことがなかったと気づきました。問題を問いの形にすることで、解決に向けた思考を進められるということが大切だと学びました。また、講座での課題を通じて、自分が「経験や勘に頼って主観的に考えがち」であることに気づき、これからは客観的に考える方法を身につける必要があると感じました。 どの問いが響く? 「問から始める、問を押さえておく、問を共有しておく」の三点は、さまざまな場面で役立ちそうです。例えば、新規サービスの開発プロジェクトにおいても、「顧客が求めているものは何か」という問いを立て、それを常に念頭に置きプロジェクトメンバーと共有することは、今すぐにでも実践したいことです。また、リーダーの役割を担う中で、「何を課題(問い)と捉えるべきか?」を見極める訓練を積んでいきたいと思います。 正しい問いは? プロジェクトを進める際や会議、データ分析の際には、必ず「問い」を中心に置くことを忘れずに進めようと考えています。問から逸れていないかを確認し、客観的な視点で議論を進めることが重要です。また、リーダーとしてその問いが本当に解くべきものであるかを見極めたいです。講座を通じて多くのことを学んだので、これから様々な場面で実践を重ねていくことが非常に大切だと感じています。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

クリティカルシンキング入門

ビジュアルで伝える!メッセージ術

どう見せれば伝わる? 相手に伝わる表現を考える際、文章だけでなく、色やフォント、グラフ、図表といった見せ方にも気を配ることが重要だと感じました。自然な目線の動きを意識し、視覚的な要素がメッセージを適切に伝えるよう工夫したいです。 資料作成で気をつける点は? 私の仕事では、既に決まったフォーマットや図表を使って資料を作成することが求められています。そのため、自らグラフや図表を作成することはできませんが、自分が考えたメッセージを図表に基づき、正確な日本語と適切な表現でお伝えすることが重要だと考えています。社内の企画書に関しては、自分がゼロから作り上げることができるため、メッセージと図表が不一致になることを避け、メッセージを効果的に伝えられる可視化を心がける必要があります。 報告で何を重視すべき? お客様への報告では、特に次の二つの点に注意したいです。一つ目は、伝えたいメッセージとそれをサポートする図表がしっかり一致しているか確認することです。メッセージと図表が一致しないと、受け手に違和感を与えるため、ここは十分に意識したいと思います。二つ目は、お客様の立場に立って受け取りたいメッセージであるかどうかを考えることです。データの解釈は立場によって異なるので、まずはお客様の視点に立って解釈し、その上で自分の考えを求められた際に、自信を持って自分の解釈を伝えられるよう準備をしておきたいと考えています。

データ・アナリティクス入門

比較で解く!データ分析の秘訣

分析の重要性を理解する 「分析とは比較なり」ということを理解することができました。比較対象が存在しないと、分析が適切かどうかを判断したり、報告相手に納得してもらうような報告ができないと感じました。比較する際には、同じ条件のものを正しく選ぶことが重要であることも学びました。また、データの種類や内容に応じて、効果的に見せる方法を使うことで、報告相手への説得力を高められることも理解しました。これからは、分析結果やデータの種類に応じた適切な見せ方を習得していきたいと思います。 データ比較の実践方法は? 交通系ICカードの決済実績やポイント付与キャンペーンの実績において、前年やキャンペーン開始前のデータと比較し、どのように変化しているか、キャンペーン効果がどう出ているかを分析し、効果を測定したいと考えています。また、分析結果を円グラフや棒グラフ、折れ線グラフを使ってわかりやすく示し、説得力を高めて伝える方法にも意識を向けたいです。 スキル向上への取り組み まずはナノ単科で学んだ内容をしっかりと身に付け、一つでも多く自分のものにしていくことを目指します。そして日々のデータ分析業務において「分析とは比較なり」を心掛け、問題点や課題を正確に把握し、比較分析を徹底するとともに、説得力があり理解しやすいアウトプットを実践していきたいです。そのために必要なエクセルやパワーポイントのスキルを勉強し、磨いていきます。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

売上2割減に挑む!論理的思考で解決へ

ライブ授業から得た教訓は? ライブ授業で取り上げられた「売上昨対2割減」に向き合う例題についての感想です。このようなオーソドックスな例題に対して、何を知りたいか、どのように仮説を立てるかを考える際、必要な情報を十分に洗い出すことができませんでした。また、適切なグラフを思い浮かべることもできず、ビジュアル化に苦慮しました。しかし、「やみくもに分析しない」「ストーリーを大事にする」という前提は常に意識しています。こうした困難に直面しないよう、フレームワークや論理的思考、分析のための関連情報について日々インプットを続け、実践に活かせるようにしておかなければなりません。 赤字解消に向けた第一歩は? 現在、自部門が赤字という現実に直面しています。まずは実績を集計し、現場のメンバーにもヒアリングしながら情報を集め、自分なりの仮説を明確化することから始めます。そして、4つのステップで分析し、解決に向けて取り組んでいきます。フレームワークを活用し、経験や勘に頼らない形で、フラットに考えながら取り組むつもりです。 チームの協力で問題を解決? 早急に解決が求められる問題のため、迅速に対策を講じます。データ集計の際は、自身の目で確認するだけでなく、メンバーの協力を得ながら多角的にデータを収集します。講座で学んだ内容をチーム内で共有し、部門の問題について関係者とともに仮説を立て、解決策を見つける努力を続けます。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right