クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

データ・アナリティクス入門

データ分析で未来を読む: 大学教育の向上指南

データ分析で重要なのは何か? データ分析を行う際には、事実(ファクト)に基づくことはもちろん重要ですが、比較の視点も非常に重要だと学びました。また、見えている事実から見えない事実を推測し考察することも大切です。 分析目的をどう設定する? データ分析の目的を最初にじっくり考えることが重要だと感じました。目的が明確であるならば、そのための準備や材料となるデータも自ずと見えてきます。 上記の内容を自分でしっかり把握した上で、上司や部下に理解してもらうためにどのようにデータを見せるか、プレゼンの仕方も重要です。 大学データをどう活用する? 私は大学に勤務しているため、大学内のさまざまなデータを分析に活用したいと考えています。具体的には、以下のテーマに取り組みたいです: - 入試成績と入学後の成績(GPA)の相関分析 - 入学後の学生生活と卒業時アンケート回答(大学に対する満足度)の相関 - 上記が国籍によってどのような差異があるか - これらのデータをもとに、大学全体として学生に提供する教育やサービスをどう向上させるか 学生の実態をどう把握する? 一例として、学生生活と満足度の相関を探るために、現在の資料を見直し、学生生活の実態を把握するための質問や指標、卒業時のアンケート内容をより充実させたいと考えています。現在のデータをより細かく見ることで、職員である私たちにも見えていない学生の実態があるのではないかと考えています。 さらに、「比較が大事」という視点を持ち、他大学の情報も参考にしたいと考えています。

データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

クリティカルシンキング入門

当たり前を疑い、論理で輝く

なぜ初めてで誤解した? クリティカルシンキングに初めて触れたとき、私はこれを「否定的に物事を見る思考法」と誤解していました。しかし、実際に学び、業務で意識して活用する中で、その本質は「物事を多面的に捉え、根拠に基づいて判断する力」であると実感しました。 どの意識が変わった? 今回の学習を通して、まず「当たり前だと思っていたことを疑う」ようになり、自分の考え方が大きく変化したと感じました。また、業務においては提案資料作成の際に、相手の立場に立って考察する意識が芽生えました。一方で、感情と論理を切り離す難しさも痛感し、事実と意見を明確に分けることの重要性を改めて認識する機会となりました。 どの根拠で提案する? 具体的には、提案力の強化に向けて、なぜその商品を提案するのか、どのような根拠があるのかを明確にすることの大切さを学びました。POSデータや市場トレンド、競合状況の分析に基づいた提案が、取引先の課題解決につながると感じています。 どうやって分析すれば? また、売上不振の際には、単純な感覚的判断に頼るのではなく、複数の視点から原因を分析する手法が有効であることを理解しました。こうしたアプローチにより、より具体的かつ説得力のある対策案を提示できるようになりました。 伝えるときの工夫は? さらに、社内での調整や報告においては、感情や主観が混じりがちな場面でも、事実と意見を明確に分けて伝えることが必要であると実感しました。これにより、会議や報告の内容がより論理的で理解しやすくなると感じています。

クリティカルシンキング入門

資料作成の新しい視点を学ぶ旅

メッセージをどう活かす? 作成者のメッセージを深く理解し、グラフを作成して資料化するスキルを学ぶことが重要であると感じました。単に型にはめたグラフを選ぶのではなく、メッセージとの整合性を意識して見直すことが大切です。これまでの自分を振り返ると、資料とは作成者が伝えたいことを載せるだけではなく、伝える相手を理解し、相手が知りたい情報をわかりやすく伝える視点が重要だと気付きました。 相手に合わせる方法は? 報告や共有資料として、上司のプレゼン資料、部署内の担当報告資料、他部署への実施報告資料、案内資料など、日々の資料作成に活用しています。相手の役職、部署、経験値が異なるため、フォントや装飾、グラフの選択、デザインなどを相手に合わせて考えたいと思います。業務効率の観点でも、見た目がきれいな資料ではなく、目的が達成できる資料を作る意識が大切です。 グラフの選定で迷う? グラフに関しては、業務でグラフを使用する機会が少ないため、グラフの種類やそれぞれの得意とするメッセージについて理解を深める必要があります。調べて学ぶことや、過去の会社の資料などを振り返って読むことが学びにつながります。 資料の目的は何? 資料作成においては、次の手順を考えています。まず、過去の資料作成の手順を振り返り、自分の傾向を見直します。そして、次回作成時には資料で誰に何を伝えるのか、伝えるメッセージは何かを明確にし、それを常に見返せる状態を作ります。最後に、必要なデータを事前に調べ、グラフを作成するなどの準備をして進めます。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

「自分 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right