データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

リーダーシップ・キャリアビジョン入門

聞く力を磨く!チームの心をつかむ方法

聞く姿勢、どう高める? 聞く力の重要性を改めて実感しました。私にはまだ十分な聞く力が備わっていないと感じています。このため、現在所属している有志メンバーのチームにおいても、各メンバーの状況や気持ちに配慮できるよう質問力を強化したいと思っています。単に聞くのではなく、意図して聞くことを実践していきたいと考えています。 どうやって全員交流? 部署が異なるため、定期ミーティングの場だけでは関わりが限られ、全てのメンバーと顔を合わせることは難しい状況です。そこで、日ごろから使用しているグループチャットを活用し、業務の忙しさやそれぞれの背景、状況を深く理解するためのコミュニケーションを実践していこうと考えています。 個々の悩み、どう理解? 「聴く」ことを意識的に行うためには、部署による業務の違いや繁忙期と閑散期、日勤シフトや夜勤のある業務など、それぞれの大変さや有志活動における個々の悩みを理解することが不可欠です。個々を深く知る意識を持ちながら、この活動を進めていく所存です。

クリティカルシンキング入門

OSな思考で部下の可能性を引き出す

OSとしての思考とは? 以前受けたリーダーシップとキャリアビジョンの講座をアプリケーションに例えるなら、クリティカルシンキングはOSのような役割を果たすというLIVE授業の言葉が強く印象に残りました。今週の学びを振り返ると、正確な仕事を推進するための思考の基盤としてだけでなく、日常のコミュニケーションや他者との関係構築においても非常に重要なスキルであると再認識しました。また、学んだことを自分のものにするためには、内容の整理方法を見直す必要があると感じました。 自立促す支援方法は? 今回の学びを生かし、部下の主体性を伸ばし自立を促すための適切な支援に取り組みたいと考えています。具体的には、インプットした知識を自分の言葉で言語化し、客観的に理解すること、目的を明確に捉えること、そして自分の思考パターンを認識し受け入れることを意識します。また、自身が問い続ける姿勢を保つとともに、相手も自然に問いかけられるような支援を、前回の学びとリンクさせながら実践していきたいと思います。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

マーケティング入門

自分も体験!新たな学びの扉

体験価値の必要性は? ある事例を通して、体験価値の向上がいかに重要かを実感しました。直近では商品の値上げが避けられない状況もありますが、値上げ後も購入してもらうためには体験価値の向上が不可欠です。これにより、他の商品との差別化が図られるとともに、環境配慮などの取り組みも情緒的な価値として受け入れられる可能性があると理解しました。 効率的アプローチ法は? 体験価値を高める方法について考える中で、顧客と直接会えるイベントは工数がかかる割にアプローチできる人数が限られていることに課題を感じています。しかし、今回の学習でその重要性を再認識し、より多くの人に効率的にアプローチする手法を模索する必要があると考えています。 企画立案の参考点は? また、自分の企画を立案する参考として、さまざまな企業が実施しているイベントやサブスクリプションサービスを実際に体験し、消費者視点からその魅力や改善点を考察することで、体験価値をどのように高められるかを探求していきたいと思いました。

クリティカルシンキング入門

何を伝えるかが未来を創る

伝えたい事は何? 今回の学習を通じて、「何を伝えたいのか」という目的を明確にするだけで、情報の並べ方や強調すべきポイントが大きく変わることを実感しました。また、伝える内容を整理する際の順序が、受け手の理解に大きな影響を与えることにも気づかされました。 グラフの役割は何? 具体的には、円グラフ・棒グラフ・折れ線グラフ・複合グラフといった各種グラフには、それぞれ得意な表現方法や役割があるという点が印象的でした。同じ情報であっても、「結論 → 根拠 → 補足」の順で提示することで、理解がよりスムーズになると感じています。 会議資料はどう表現? この知見は、会議での資料作成など、業務の様々な場面で活用できると考えています。まずは「何を伝えるか」を最初に決定する癖を身につけ、「このグラフは何のためにあるのか」と自問することが大切です。また、現場が行動に移しやすいよう、伝える順番や見せ方に工夫を凝らし、読み取るべきポイントを具体的に添えることを意識していきます。

戦略思考入門

未来を見据えた営業戦略の構築方法

他業種比較で得られた発見とは? 他業種の動向を比較することで、自分の業界における事業経済性の理解が深まりました。特に「返報性」という言葉については、以前は知らなかったものの、自分にも当てはまる心理状態であり、大きな発見でした。また、経済性が時代の流れによって絶えず変化することも学びました。 幅広い視野からの分析で見えた課題は? 自分の顧客やエリアに注目しがちですが、支店規模や全社規模といった幅広い視野での分析の必要性を感じました。特に、捨てるという技術についてはまだ足りないと感じています。今後は最短距離を常に意識し、何から取りかかるべきか、何をやらないべきかを明確にして活動していきたいです。 営業プランの見直しと今後の戦略は? 毎期ごとに半期の営業プランを作成していますが、ゴールを半年後に設定する短期的な営業プランに加え、中長期を見据えた場合にどのように実績のトレンドを変えていくか、そのために今期で何をする必要があるかを今後考慮していきたいと思います。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

ロジックツリーで拓く課題解決

正常と理想は何が違う? 正常なあるべき姿とのギャップを解消するだけでなく、現在の正常な状態からありたい姿へのギャップを埋めること自体もひとつの問題解決だという考え方は非常に印象に残りました。 ロジックツリーはどう使う? また、ロジックツリーという手法について学び、その分解方法に層別分解と変数分解があることを理解できた点も大きな収穫でした。MECEの原則を意識することで、分析において情報の漏れや重複を防ぎ、ビジネスチャンスを逃さないための重要性を再認識しました。 受け手は誰に焦点か? さらに、臨床検査サービスの受け手は患者だけでなく、医師やその他の医療スタッフなど多岐にわたるため、どの受け手に焦点を当てるかを考慮する際にロジックツリーが有効に活用できると感じました。実際、臨床検査のプロセス改善においては、層別分解を用いて「人」に関する問題と「設備」に関する問題に分けて検討するという具体的なアプローチが示唆されており、実務の現場でも役立つと実感しました。
AIコーチング導線バナー

「理解 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right