データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

クリティカルシンキング入門

自問自答で拓く学びの道

どう自己問うべき? クリティカルシンキングとは、他者ではなく自分自身に問いを続けることで、物事を多角的に考え、新たな発見や潜在的なリスクに気づくための思考方法です。この手法を取り入れることで、アウトプットの質を向上させる効果が期待できます。 どう実践するのが効果的? この思考法を効果的に実践するためには、まず①目的を明確に追求すること、次に②自分自身や他者の思考の癖を認識すること、さらに③常に考え続ける姿勢が重要です。具体的なアクションとしては、まず異なる視点から目的を整理することが挙げられます。加えて、積極的にアウトプットを行い、その精度について他者から評価を受けることが求められます。そして、アウトプットや意見をまとめる際には「具体的には?」「たとえば?」といった問いを投げ、内容をより深く掘り下げることが効果的です。 どんな場面で使う? この手法は、対人関係はもちろん、自己の振り返りやキャリアビジョンの策定においても役立ちます。たとえば、業界を問わず会議のファシリテーションやプレゼンテーション、新たな企画を立案する場面で、各方面からの意見や視点を取り入れて論理的に整理することに大いに貢献します。 どの問いが視座を変える? 思考を深めるためには、どのような問いを自分に投げかけるかが大変重要です。こうした問いかけは、日常の業務やプロジェクトにおいても、新たな視座を得るためのきっかけとなるでしょう。

リーダーシップ・キャリアビジョン入門

伴走と気づきで育むリーダー

リーダー育成はどう進む? 全体を振り返ると、リーダー育成に対して十分な力を発揮できていなかったと実感しました。「背中を見せて育つ」や「伴走するから学ばせる」といった指導方法を採用していましたが、実際には部下に任せきっていた面があったと痛感しています。 抽象課題は何を示す? また、リーダーシップやコミュニケーション能力といった抽象的な課題について、具体的に何が求められるかを言語化できていないことが問題点として残っています。たとえば、リーダーとして何ができれば良いのか、またコミュニケーション能力が高いとはどういう状態なのか、必要なスキルは何かといった点を体系的に理解し、不足している知識を認識してインプットすることが必要だと感じました。 部下のモチベーションはどう引き出す? さらに、部下が持つモチベーションやインセンティブを正しく理解した上で、適切に動機づけを行えるよう努めたいと思います。画一的な指導方法ではなく、パスゴール理論を活用して個々に適した指導を行い、マインドセットの変革を促すアプローチを目指します。加えて、1on1や面談などを通してキャリアアンカーの考え方を共有し、それぞれの価値観や内面を明らかにしていくことも重要だと考えています。 学びをどう整理する? この6週間、さまざまな方との意見交換を通じて多くの学びを得ることができ、大変有意義な時間となりました。ありがとうございました。

データ・アナリティクス入門

実践で納得!A/Bテストの極意

A/Bテストって何? A/Bテストの実施方法がとても参考になりました。まず、目的を明確に設定した上で、テスト期間や条件をできるだけ統一し、一つの要素に絞ってテストを行う重要性を学びました。これまであまり理解していなかった点を、具体的な説明を受けながらしっかりと納得することができました。 仮説の検証はどう? また、仮説を立ててテストを行い、その検証を実施した後、もし仮説が間違っている場合はなぜそうなったのかを考察することの必要性にも気づかされました。これらの学びは、今後の業務にぜひ活かしていきたいと考えています。 広告効果はどこで? 弊社ではクリスマスシーズンによくWeb広告を実施していますが、その際にA/Bテストを行うことで、広告の成果を向上させることができるのではないかと思います。特に、効果的な文言を選定する点では、コストも低く簡単に実施できるため、今年のクリスマスキャンペーンで取り入れてみたいと考えています。 チームでどう動く? 具体的には、まずチーム内でA/Bテストの概要を共有し、昨年度の広告で使用したビジュアルや文言を振り返りました。その上で、今年のキャンペーンでは複数のパターンのデザインや文言を用意することを提案する予定です。また、正確なデータを得るために、どのくらいの規模のオーディエンスに対してテストを行えばよいかについても、さらに調べて学びたいと思います。

アカウンティング入門

数字で読み解く企業の個性

企業の利益は何が違う? 企業には様々な利益が存在し、それぞれの性質を理解することで、企業活動の本質に迫ることができると感じました。同じ業種内でも、どこに価値を見出し、どの部分に独自性を表現するかで、示される数字や財務状況が大きく異なることに気づきました。特定の同業他社の財務情報を参考にするのも有益ですが、自社ならではの価値の源泉を明確にすることが、企業としての個性を引き出すのだと思います。 利益率はどう意識すべき? また、起業後は各利益率を正確に把握し、それが目標値に近いかを意識して経営に取り組むことが大切だと感じました。特にスタートアップ企業は、すぐに売り上げが上がらない場合や、補助金などで一時的な運転資金を得ることも多く、利益率をすぐに重視する経営は難しい面があることを実感しています。今後は、財務情報が得られる企業との比較も行い、事業内容だけでなく数値面からも学びを深めていきたいと思います。 財務の本質は何が分かる? さらに、これまで勤務していた複数の企業の財務諸表を見比べる中で、業種や規模の違いにより共通点が見いだせない部分がある点に、非常に興味をそそられました。たとえば、売り上げがない研究機関や複雑な連結決算を行っている企業など、それぞれの事情が浮き彫りになっています。一方で、スタートアップはお金の流れがシンプルで、初めて見る者にとっても理解しやすいと感じました。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

マーケティング入門

ヒット商品の誕生は計画的に可能!

ヒット商品は計画的に? 今週の事例から、ヒット商品は計画的に生まれるものだと感じました。Z世代のターゲットユーザーと化粧品市場の売り場を詳細に分析した結果、商品のコンセプトが導き出され、ヒット商品の誕生が可能になるというロジックが見えました。 値上げ成功のための新視点とは? また、「どうすれば値上げができるか」についても、新しい視点を得ることができました。特にユニークな差別化や顧客体験の差別化が、値上げの達成に役立つという点は重要です。原料高騰の背景も考慮し、自社の強みを整理して独自の差別化を図り、顧客に特別な体験を提供することで、商品提案につなげる必要があります。 ブレストで強みを具体化するには? 研究所のメンバーと共に、自社の強みや市場への戦略についてブレストを行い、アイディアを具体化していきます。さらに、顧客にユニークな差別化や購入体験を感じてもらうためには、必要とされる新技術についても意見を出し合い、最終的には研究テーマとしてブラッシュアップしていく予定です。 価値を更新していけるか? 同じ体験を繰り返すことで価値が減衰すると学びましたので、自社製品についても常に価値を更新していけるかどうか、一度見直してみたいと思います。この事例に限らず、他社のヒット事例も3C分析などを通じてロジックを調べ、学びを得ていきたいと考えています。

デザイン思考入門

個別最適化で創る新サービスの未来

開発工程で気づいたことは何か? まな板のような単純なものでも、開発には多くの工程があり、その中の一部については自分が想像できていなかったことに気づきました。グループワークを通じて、さまざまな洞察を得ることができました。 なぜ個別最適化が重要なのか? 特に印象に残ったのは、万人に最適なものは誰にも最適ではないという点です。これからは個別最適化が必須であると理解しました。新規サービスを考える際、つい多くの利益を追求し、より多くの人から支持を得られそうな内容を考えがちでしたが、実際には特定のシチュエーションや顧客のペルソナを意識することが非常に重要だと気付きました。 新規サービス開発への活用法は? 新規サービス開発にこの学びを活用したいと思います。これまでは広いニーズがありそうなものに焦点を当てていましたが、これからは具体的な顧客の属性や課題、おかれた状況を詳しくイメージし、開発に役立てていきたいです。 顧客からのフィードバックはどう活かす? まず、これまでの経験から具体的な顧客の属性や課題、シチュエーションを洗い出します。そして、洗い出した内容に基づいて簡単なサービス案を作成し、既存のいくつかの顧客に対しヒアリングを行います。ヒアリング結果を踏まえてサービス案をブラッシュアップし、さらに広い範囲でのヒアリングを行い、精度を高めていきます。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

問題解決の新たな視点を得る学びの旅

解決へのプロセスをどう進めるか? 今回の講義を通じて、問題解決における「What、Where、Why、How」の各要素に分けて進めることの重要性を再認識しました。特に、平均値を見る際に「ばらつき」という視点が抜け落ちやすいことに気づけたことは大きな収穫です。ばらつきを確認することで、新たな気づきや次の問いに繋がることがあるため、これを自身の思考の癖として意識的に取り入れていきたいと思います。 データ分析はどう活用すべき? また、データ分析の活用については、会社業績の分析に役立てていきたいと考えています。各要素をもとにして思考を整理し、比較をギャップとして描き出す際には視覚的にグラフも活用します。さらに、考えの幅を広げるためのフレームワーク(3C・4P)を、幅を広げるだけでなく、様々な場面で応用できるように意識して使うことで、新たな気づきや問いにも繋げていきたいと思います。 比較分析はどのように進化する? 自身の役割としては、バックオフィス化を進めることに加え、会社業績の分析資料の作りこみも進めています。Q2の考えを柱として、基本的な比較においても、前期・前月比以外に施設間比較や競合の数値を集めての比較、さらに売上の分解(ロジックツリー)なども行い、自社のマーケティング施策の検討に繋げていきたいと考えています。

戦略思考入門

未来を創る戦略のヒント

分析手法をどう選ぶ? 戦略立案の際、PEST、SWOT、5フォース分析を用いて外部および内部環境を把握し、さらにVRIO分析によって自社の強みと顧客ニーズを照らし合わせる重要性を学びました。これにより、競合との差別化と競争優位の構築が実現できるという実感を得るとともに、各種フレームワークが思考の偏りを正し、戦略提案の明確性と説得力を高める有用な手段であることが理解できました。 差別化はどう実現? また、教育業界は年々外部環境の厳しさが増しており、各大学が受験生の獲得に向けてさまざまな差別化戦略を模索している現状があります。しかし、経営的に実効性があり、かつ学生や保護者にとって魅力的な差別化を実現することは簡単ではありません。本講義を通じて、差別化は奇抜な発想ではなく、社会動向や市場ニーズを正確に読み取る「時代を読む力」に根ざしていると再認識しました。 大学改革の方向は? 特に大学では、学部や学科の再編、教育内容の見直し、広報手法の革新などにこの視点を取り入れることで、持続的な成長が期待できると感じました。さらに、中長期的な計画や入試戦略の策定においても、十分な環境分析を行い、的確なポジショニングと内部資源の見極めを実施する重要性を強く感じました。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。
AIコーチング導線バナー

「行い × 得る」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right