データ・アナリティクス入門

数値分析で見える改善のカギ

売上低下の原因は? 売上低下の理由を分析する際、問題箇所の特定、売上構造の分解、そして仮説設定と検証方法をリアルタイムで実践しました。特に、売上単価については平均値だけでなく中央値も用いることで、新たな切り口から問題点を把握できることを再確認しました。また、グラフの見せ方が伝える力を持つことについても改めて学び、理解を深めるきっかけとなりました。 予算未達の理由は? 同様に、予算が未達成となっている要因を特定するため、予算構成項目を分解し、前年や前月との比較を通じて落ち込みが生じている点や、伸ばすことが可能な点を明らかにしました。さらに、予算未達成が「予算設定自体の高さ」なのか「実績の低下」に起因しているのかを明確にすることも試みました。 社内データの解析は? 最後に、社内データを活用して予算の各項目ごとに集計を行い、予算比、前年比、前月比などの比較を通じて問題箇所の把握と予算の位置づけを行いました。問題箇所が明らかになった後は、ギャップを3Cの視点から分析し、具体的な仮説を立てた上で検証を進めました。

データ・アナリティクス入門

仮説と会議で拓く未来戦略

テスト実施に何が大事? ABテストについては、これまで営業部門で実施した結果を共有した経験がありますが、今回主体的に実施する際の留意点を改めて学びました。特に、テストを行う際には目的と仮説を明確にし、しっかりとした検証項目を設定することが重要だと感じました。今後の新規事業展開において、これらのポイントを意識して進めていきたいと思います。 評価の選定はどうする? また、複数の解決策を効果と費用のXY軸で評価した経験から、評価基準をさらに1~2項目増やし、数値化することで、総合評価に基づいた優先実施策の選定に取り組んでみたいと考えています。評価基準を選定する際にブレインストーミングを交えた議論を行う過程も楽しみです。 会議計画の進め方は? さらに、月次の経営会議において、各営業部門が問題抽出、原因究明、解決策の洗い出し、実施試作の選定、アクションプランの作成、進捗共有という一連のプロセスを推進する会議計画を策定することを提案し、年度内に効果検証を実施する案についても、社内で相談を進めていきたいと考えています。

デザイン思考入門

生成Aiが描く共感と挑戦の軌跡

画像作成に何が隠れている? 生成Aiの活用については、以前から会社内でも取り組んでいましたが、特に画像作成にAiを利用している点に驚きを覚えました。これまで画像のパターン作成には挑戦しておらず、今回の機会にぜひ活用してみたいと思います。無料のChat GPTだけでなく、有料版のChat Aiも試していく予定です。 在宅営業で何が難しい? また、エデュケーションチームで営業人材育成のリーダーを務めている中で、対象者を顧客と捉え、その顧客の課題をチーム内でデザイン思考に基づいて解決策を模索する取り組みを始めています。しかし、在宅での営業が多いことから、共感をどのように構築するかが課題となっています。 出社で得る発見は? さらに、4月から週に1回の出社が義務付けられることになったため、出社時には主に営業担当者に対して、共感や観察を丁寧に行っていくつもりです。営業活動中のPCの挙動を、許可を得た上で動画に収め、チームで検証することで新たな課題が浮かび上がるのではないかと試してみたいと考えています。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

仮説と共に挑む成長の旅

仮説整理のコツは? 問題解決に取り組む上で、仮説を持つことの重要性を学びました。多くの仮説を出すことが望ましい一方で、考えが散らばってしまう可能性があるため、フレームワークを活用して体系的に整理することが有効です。また、仮説を立てる際には、その目的がコミュニケーションか問題解決か、あるいは過去・現在・将来のどの視点に基づいているのかを明確にしておくことが大切だと感じました。 原因特定の秘訣は? 問題発生時の原因特定をファシリテートする際には、議論が発散しないよう、仮説が結論に至るものなのか問題解決を促すものなのかを分類し、メンバーと共有することが必要だと実感しました。さらに、社内で問題解決のプロセスを議論する際の枠組みとして仮説を共通言語とすることで、検証マインドの向上、説得力の強化、問題意識の向上、スピードアップ、行動の精度向上につながることを丁寧に伝えていく意義を感じました。

「社内 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right