データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

戦略思考入門

データが照らす捨てる勇気

なぜ実践が苦手? この講座では「戦略における捨てるを身につける」という内容が特に印象に残りました。以前からその考え方に触れていたものの、講座を通じて実際の場面でこの手法を適用する必要性を改めて実感し、自分自身がその実践を苦手だと感じていた理由にも気づかされました。 批判とデータの意義は? 「捨てる」という行動は周囲からの批判を恐れるケースが多く、自分がこれまで培ってきたものを変えるリスクと捉え、避けたくなる部分があると感じていました。しかし、グループディスカッションでは「捨てる」の代わりに、定量的なデータに基づいて選択するというアプローチが紹介され、トレードオフの視点を取り入れることで、これまでの取り組みを付け加える形で活かす方法もあるのではないかと学ぶことができました。 職場での製品挑戦は? 自身の職場では、従来の製品とは異なる新たな製品開発が求められており、「新しいことを行う=変化する」がしばしば批判の対象となる状況があります。そこで、まずは客観的なデータに基づいた判断が重要だと感じています。今後は、常にデータで分析できる体制を整え、メンバーにその意識を共有して、定量的な視点から取捨選択を行いながら業務を進めていきたいと思います。 連携の必要性は何? 仕事は一人で完結するものではないため、日常的なコミュニケーションの重要性を実感しています。皆さんも、周囲との連携を図るために日頃からどのような工夫をされているのか、ぜひ教えていただきたいです。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

マーケティング入門

軸で切り拓く未来の可能性

どんな軸が効果的? ある企業の事例から、商品の仕様を変えることなく新たなターゲットに訴求する際、商品の特徴の中から二つの軸を特定し、ポジショニングマップを検討することが、他社との差別化や自社の強みにつながると学びました。 商品名の魅力は何? また、商品名が持つユーモアや分かりやすさも、商品やサービスの開発において非常に重要であり、場合によっては改名を検討することでターゲットの幅が広がり、売上向上の効果が期待できるという点も印象に残りました。 イベント名はどう響く? 毎年開催している同様のイベントにおいて、イベントタイトルやキャンペーン名称が結果や反響に大きな影響を与えていることを体感しており、企業として二つの軸を十分に考慮し、優位性と顧客からの共感を得られるポジショニングマップを基に企画を打ち出していく必要性を感じました。 顧客の興味は何? さらに、自社が伝えたい魅力や強みだけにこだわるのではなく、顧客が何に興味を持つかという視点を持つことが重要であると考えています。 STPをどう生かす? 加えて、施策ごとにSTP(セグメンテーション、ターゲティング、ポジショニング)を丁寧に実施すること、そして現有のデータだけに頼らず、フレームワークを活用して新しい市場の可能性を探る必要性も強く感じました。また、ターゲティングの評価基準を言語化しながらターゲット選定を行うことによって、運営の質を向上させていきたいと考えています。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

データ・アナリティクス入門

ボトルネックを見える化するプロセス分析の力

プロセス分解で何が見えた? プロセス分解を通じて問題の原因を明らかにすることが非常に印象に残りました。実際には、ある程度理解しているつもりになってしまうことが多いため、この方法にはハッとさせられました。プロセスを分解し、フェーズ毎の定量データを比較することで、ボトルネックが見えることがわかりました。特に採用プロセスとの親和性が高いと感じました。 A/Bテストの限界を考える A/Bテストについて、一要素ずつ検証を行う方法が紹介されましたが、実際には一要素だけで結果が大きく変わることは少ないのではないかと疑問に感じました。 採用データの深掘りが重要 採用プロセスや学生の動向を分解し、どの段階で歩留まりが多いのか定量データを用いて検証していきたいと感じました。また、顧客の採用ホームページを作成した際、その後どのくらいの人がサイトを訪れ、クリックされているのか、実際に応募につながった人数(コンバージョン率)についても調査していきたいと思いました。 来年の採用戦略とは? さらに、顧客企業の採用プロセスを分解し、プロセス毎の参加数、辞退数、新規流入数などのデータを検証することが必要だと感じました。ボトルネックの原因を考えた上で仮説を立て、学生の志向性や市場全体の動きと比較することが重要です。その上で、来年の採用に向けてどのような行動を起こす必要があるかを考え、すぐに軌道修正ができる場合は速やかに行動に移したいと思います。

戦略思考入門

選択と集中で顧客感動を高める方法

どうして捨てるの? 「捨てることが顧客の満足度アップにつながる」というフレーズが特に印象に残りました。普段、顧客のために多くの選択肢を用意するのが良いと考えがちですが、実際には選択肢を減らすことが求められる場面も多々あります。すべてに対応するのではなく、あえて選択肢を絞り、それを徹底的に磨き上げることで、最終的に顧客にとって魅力的な企業になれると学びました。 判断をどう明確に? 「捨てる判断の明確化」は、結果的に正しい答えを導くだけでなく、周囲を納得させるためにも必要です。これまで「なんとなく良さそう」という感覚で判断していたことに気づかされました。今後は、定性的ではなく定量的に説明できるように意識していきたいと思います。 紙を捨てる理由は? 現在進めているペーパーレス化は、まさに「紙を捨てる」ことであり、この考え方を直接活用できると感じています。その際、なぜ捨てるべきなのか、捨てた後の未来に何が待っているのか、顧客の利便性がどう向上するのかを意識し、経営陣の合意や周囲の説得を進めていきたいです。 成果をどう示す? これらを踏まえて、以下の点を意識しながら施策を検討・実行していくつもりです。 1. 方向性を明確にし、何を実現したいのかを具体化する。 2. 紙を捨てることで得られる成果は何かを考え、それがブレークスルーになる案であるかを検討する(対顧客、営業、本社)。 3. 定量的なデータで示すことを心掛ける。

クリティカルシンキング入門

グラフ化で見える学びの新発見

自分で動かす意義は? 自分で手を動かしてみることで、理解の解像度が上がるのを実感しました。特に、データをグラフ化して視覚的に捉えるという発想は新鮮で、印象に残りました。 実践で何が見えてる? 自ら手を動かして学ぶことで、学習の理解が深まりました。また、グラフ化の方法についても新しい発見がありました。こうした具体的な例を取り入れることで、理解をさらに進められると思います。 継続の理由は? 今後も、手を動かしながら実践し、新しい手法を積極的に取り入れていくつもりです。継続することが重要だと感じています。 売上分析はどう見る? 売上の過去3年分の推移を、担当別、単科別、クライアント別、職種別に分析すれば、自社の戦略を見出せそうです。特に業績が振るわないコンサルタントについては、売上を既存客と新規クライアントに分けて要因分析し、営業戦略に活用できると思います。また、決定プロセスを徹底的に分析し、CSF(Critical Success Factors)を担当別に分析することもイメージできました。全社売上におけるお客様の属性の変化も分析する価値がありそうです。 実行計画はどうなる? これらの分析を早速実行してみたいと思います。まずどのデータを使うか探し出して加工し、毎週1時間程度の時間を確保して、自分の事業の特徴を深く理解していく予定です。そして、理解した内容を営業戦略にも活かしていきたいと考えています。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

幾何平均に出会った瞬間

代表値の選び方は? データの分布を把握する際、代表値の選び方は非常に重要です。平均値は外れ値の影響を受けやすいのに対し、中央値はその影響が少なく、より正確な中心傾向を示すことがわかりました。また、平均値には単純平均、加重平均、幾何平均の3種類があるという点も新たな発見でした。特に成長率の変化を評価する場合に利用される幾何平均という概念は、初めて聞いた言葉で印象に残りました。 散らばりはどう測る? 一方、データの散らばりを確認する方法として、数値で表す場合は標準偏差がよく用いられ、また、ヒストグラムなどの可視化手法が直感的な理解に役立つことが理解できました。 分析の視点は何? これまでのデータ分析では、単純平均と加重平均に頼る傾向がありましたが、今後は中央値やヒストグラムといった手法も積極的に活用し、データの特徴を多角的に捉えていく必要があると感じています。さらに、これまで分析の選択肢に含めてこなかった幾何平均にも意識的に取り組み、より正確な分析を目指したいと思います。 BIツールの使い方は? また、BIツールを活用して経営ダッシュボードを構築する際には、代表値と散らばりの両面からデータをビジュアルに表示できるよう工夫していく予定です。 幾何平均はいつ有効? 今後は、幾何平均がどのような場面で最も有効に働くのか、具体的な利用シーンについても更に知識を深めたいと考えています。

「データ × 残り」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right