データ・アナリティクス入門

仮説が導いた私の成長ストーリー

仮説って何? 仮説とは、ある論点に対する仮の答え、または分かっていないことに対して一時的に立てる答えを指します。 問題解決とは? 仮説は、目的に応じて大きく①問題解決の仮説と②結論の仮説に分類されます。問題解決の仮説は、具体的な問題を解決するために「What(何が問題か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」という流れで検討します。一方、結論の仮説は、ある論点に対する仮の答えを示すもので、たとえば、あるターゲット層についての見解を一度立てた上で、別の側面(たとえば妊娠中の女性など)についても検討することが挙げられます。 フレームワークは何? また、仮説の立案には、3C(市場・顧客、競合、自社)や4P(製品、価格、場所、プロモーション)といったフレームワークが有効です。正しく仮説を用いることで、個々の仕事に対する検証マインドが高まり、説得力やビジネスのスピード、行動の制度が向上します。さらに、複数の仮説を立てて互いに網羅性を持たせることが、適切な判断へとつながります。 人事問題への対策は? 特に人事に関する課題の場合、問題解決の仮説が大いに活用できると感じました。離職率や休職率の改善、研修受講率や資格取得率の向上、また社内イベントの集客率向上といった課題に対して、「What→Where→Why→How」というプロセスは有用です。ヒトに関する課題は思い込みや特定の情報に影響されやすいため、決め打ちにせず、複数の仮説を立てることが肝心です。たとえば、現場の声を大切にしながらも、若手や中堅、管理職、経営層といったさまざまな層の意見を広く取り入れる必要があります。 組織共有の大切さは? 最後に、仮説思考の重要性をチーム内で意識させることは容易ではありません。感情に流されやすく、決め打ちで施策を決定してしまう風潮がある中、この思考プロセスをいかに周囲に広げていくかが課題です。一人だけでこのプロセスを実践しても成果は出にくいため、組織全体で共有することが求められます。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

データ・アナリティクス入門

多角的視点で仮説を練り上げる重要性とは

仮説構築のポイントとは? 仮説を立てる際のポイントとして、以下の二点が重要であると学びました。 まず、複数の仮説を立て、そこから絞り込むことが大切です。最初から決め打ちにせず、他の可能性を探ることで幅広い視点を持つことができます。また、仮説同士に網羅性を持たせ、異なる切り口で考えることも必要です。具体的には、3Cや4Pなどのフレームワークを活用することで、多様な視点から仮説を構築することができます。 データ評価の重要性を理解する 次に、仮説を検証する際のデータ評価についてです。単に目の前の数字を比べるのではなく、平均値や割合など、どの指標を比較するかを慎重に選ぶことが重要です。データの取り扱いについても、自分に都合の良いデータだけを集めるのではなく、必要なデータを自ら取りに行く姿勢を持つことが求められます。これにより、仮説はより説得力のあるものとなります。 実証実験の成功をどうつなげる? 今週の学習では、「複数の仮説を立てる必要性」や「自分の都合の良いデータだけをとらない」といった点の重要性について改めて学ぶことができました。実証実験においては、これらのポイントが本来最も重要であるにもかかわらず、見落とされがちです。新規事業においては、実証実験の成功要因や失敗要因を特定し、次へと繋げるためにも、責任を持って仮説検証を行う必要があります。 目標達成のための仮説設定 私の担当フィールドでは、目標達成に向けたキーファクターを見定めるために、複数の仮説を自分なりに設定したいと考えています。具体的には、以下のステップを意識して進めていきたいと思います。 - 実証実験の検証目的を見直す(現地側と調整可能な範囲で行う) - 検証目的に沿って仮説を洗い出す(いくつかピックアップし、検証項目を絞る) - 実証実験の目標値を先方と合意する これらを進めるにあたり、今週の学習で特に印象に残った「複数の仮説を立てること」や「自分の都合の良いデータだけをとらない姿勢」を常に意識して実行していきたいと考えています。

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

データ・アナリティクス入門

仮説の力で未来を切り拓く

学んだことは何? 「仮説の立て方」「データ収集の注意点」「仮説の種類の違い」を学びました。これまで、集計したデータから都合のよい部分だけを抜き出して仮説を組み立てる、という我流のやり方に限界を感じていました。 仮説立案のコツは? <仮説の立て方のポイント> ・複数の仮説を用意し、最初から一つに絞らない ・仮説同士に網羅性を持たせる データ収集の秘訣は? <データ収集の注意点> ・自らデータを取りに行き、仮説の立証に努める ・仮説に対する反論も排除できる情報の入手を心がける 仮説の違いはどう? <仮説の種類の違い> ・結論の仮説:ある論点に対する仮の答えを示す ・具体的な問題解決を目的とした仮説:分からない点に対する仮の答えを提供する 検証と説得はどう? これらを通じ、検証マインドや説得力、問題意識の向上、迅速な対応、そして行動の精度向上が期待できると実感しました。 海外動向は読める? また、海外顧客の所要動向を分析する際に今回の学びが大いに役立つと感じています。特定の顧客向けであれば、分析対象を絞って時系列で変化を追えばよいのですが、一般向けの製品の場合、市場全体の動向や地域性も踏まえつつ、複数の仮説を立て多くのデータを基に分析する必要があります。そのため、仮説のパターンを複数用意し、ノウハウとして蓄積していくことが非常に重要だと思います。 分析進捗は順調? 現在、顧客所要動向分析効率化のプロジェクトに参画しており、具体的なアクションとして以下の点を実施しようとしています。まず、カスタム品と汎用品それぞれに適した分析指標を設定します。次に、どの指標の変化が顧客所要に大きな影響を与えるのか、複数の仮説を立てながらデータを検証します。そして、仮説と異なる動きが見られた場合、もしくはどの仮説とも一致しない場合には、分析指標自体の見直しを行います。これらのアクションを月次で繰り返すことで、仮説のパターンを着実に蓄積し、分析の精度を高めていきたいと考えています。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

クリティカルシンキング入門

思考の偏りを解消するクリティカルシンキングの力

クリティカルシンキングの目的とは? ワークを通して、思考は偏りやすいことがよく分かりました。クリティカルシンキングを学ぶ目的は、頭の使い方を知り、思考の偏りをなくすことだとわかりました。その際、有効な方法の一つがロジックツリーで、考えやすい部分だけを掘り下げないようにすることができます。私はアイデアが浮かんだ際に、物事のある一面だけを膨らませて進めようとする癖があるため、まずは目的達成に必要な要素を整理するようにしたいと思いました。 お客様の声にどう対応する? 私はソフトウェアの保守サイトの運営やコンテンツの制作を担当していますが、お客様アンケートなどで「情報は豊富にあるが、目的の情報にたどり着かない」という声を多くいただきます。この課題をクリティカルシンキングを学んで解決したいと考えています。お客様によって導入の目的、運用スキル、使いたい機能などが異なるため、それぞれの目的の情報にたどり着くためにどのような導線を用意すればよいのか?その際、どのような視点でお客様の行動を分析するのがよいのか?などを、社内の複数部門で連携し仮説を立てているのですが、いずれのシーンでも判断が難しい状況です。クリティカルシンキングで思考の制限を取り除くことができれば、このような場面で正しい状況判断ができ、効果的なCX改善につなげられると思っています。 思考制限を取り除くには? 自分の中で思考を制限してしまわないように、広くいろいろな立場の人の意見を収集して課題分析することが必要だと思いました。最近は会社の方針で時間の節約を求められるため、限られたメンバーの意見をもとに課題の改善検討を進めることが多くなっています。講座の中でも「社内の常識は非常識」という話が出ていましたが、社外の専門家の意見などを幅広く収集する機会を増やしてもよいと思いました。また、収集した課題をロジックツリーなどにあてはめ、要素分解することで、課題の本質が想定外のところにあることに気付ける機会を得られそうです。
AIコーチング導線バナー

「目的 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right