戦略思考入門

勇気ある捨てるで本来の自分へ

「捨てる」は必要? 講座全体を振り返る中で、印象に残ったのは「捨てる」という言葉に対する否定的なイメージです。一見、不要なものをすべて除去するようなネガティブな印象を受けますが、実は本来のありたい姿に近づくために必要な考え方であると再認識しました。不要なものを当たり前とするのではなく、理論に基づいたデータの解析や選択が不可欠であると感じました。 現状リセットはどう? 自部門の業務にあてはめると、不具合対策の一環で設計時に追加された検査作業など、当たり前になっている工数を見直す必要があります。まずは「捨てる=元に戻す」という視点で、現状をリセットすることから取り組み、そのためのデータ収集を確実に行います。その上で、元の状態に戻した後の改善策は、現場の努力の成果として、現場目線と会社目線の両面から業務を推進していきたいと考えています。

戦略思考入門

戦略で自分らしい未来を創る

得意分野と働き方は? 自分のゴールは、得意で興味のある分野を仕事にし、時間に縛られずに自由な働き方を実現することです。しかし、「得意なもの」とは何か、「時間に縛られず」とは具体的にどのような状態か、「自由に働く」とはどの条件を指すのかを、より明確にする必要があると感じました。 戦略実践の秘訣は? また、戦略的思考を実践するにあたっては、論理的な考え、基本的な算数、分析力、考え抜く力、情報収集能力など、さまざまな能力が求められると実感しています。こうした能力は、ロールモデルがあまりいない状況で目標に向かう際にも非常に役立つと感じています。 具体分析の進め方は? そのため、ただ漠然と進めるのではなく、3C分析、PEST分析、5フォース分析、差別化やトレードオフの考え方を用いながら、着実に目標へ向かって進んでいきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

データ・アナリティクス入門

仮説検証で広がる実務の可能性

仮説思考の基盤は? 仮説思考の重要性を実感しました。まずは、問題解決のために仮説を立て、その仮説が正しいかどうかを検証するためのデータを収集するという基本プロセスが、結論を導くための確かな基盤になると感じました。 複数仮説の選び方は? また、複数の仮説を最初に立て、その中から有力なものを選別していく方法は、柔軟かつ多面的なアプローチを可能にします。さらに、仮説を立てる際には、3Cや4Pなどのフレームワークを活用することによって、問題をあらゆる角度から捉え、具体的なデータ収集の方法(既存のデータの活用や新たなデータの収集)の選択にもつながることを学びました。 実務活用のポイントは? この学びを活かすことで、実務においても課題の原因究明や効果的な打ち手の検討に役立てることができると感じました。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

マーケティング入門

対面で引き出すお客様の真心

どうして深掘りする? 顧客のニーズを正確に捉えるためには、顧客が不満に思う点を深く掘り下げる必要があると学びました。実際、顧客自身が気づいていない点も、アイスブレイクを交えながら信頼関係を築くことで、従来の不満以外の情報を引き出せる可能性がある点が印象に残りました。 訪問の意義は何? 自社商品の改善点を模索する中で、今後は顧客先を訪問した際に、信頼関係がすでにある方と個別にお時間をいただき、ざっくばらんに不満やご意見をお聞きしたいと考えています。また、他の社員からも、顧客先で得た不満の情報を収集して、全体の改善に役立てられればと思います。 なぜ対面が必要? 最近ではリモート会議で済ませるケースが増えていますが、やはり対面での会話でしか本音を引き出せないのかという疑問が残ります。

クリティカルシンキング入門

伝わる文章を築くピラミッド思考

本当に伝わってる? 他者の文章では、主語と述語の関係や一文の長さに違和感を覚えやすいものの、自分が書いた文章が本当にわかりやすく伝わっているかは気づきにくいものです。 論理整理はできた? そこで、ピラミッドストラクチャーという手法を用いて、主張とその根拠となる情報との関係を整理することが有効です。これにより、自らの思考過程が論理的に組み立てられているか、また補強が必要な部分がどこかを把握しやすくなります。 説得力はどう得る? 業務において情報収集や分析の結果をまとめ、それを説明する際にも、この手法は役立ちます。ピラミッドストラクチャーを活用することで、聞き手に自分の考えや意見を的確かつ明瞭に伝えることができ、説得力を高めるための多角的な情報検討にもつながります。

データ・アナリティクス入門

実践で知るデータ分析の極意

振り返りの授業内容は? 今週は、これまでの学びを総合的に振り返る機会となりました。ライブ授業の録画を視聴し、講師や参加者の意見を聞きながら、実践的な課題に取り組む中で、分析の基本的な考え方や手順をストーリーとして学ぶことができました。最初に何をするのか、どのような課題に着目するのか、データの収集方法や加工の仕方、そしてどのように結論に結びつけるのか、という流れが非常に分かりやすかったです。 比較考察ってどう考える? また、社内にある商品の魅力度や売上の既存データを単独で捉えるのではなく、何らかの基準と比較しながら考察する重要性を再認識しました。問題の要因分析においては、一面的な意見に頼らず、ほかにどのような可能性があるのかを自分なりに掘り下げてみる姿勢が大切だと感じました。

クリティカルシンキング入門

イシューで変わる学びのカタチ

イシューの本質は? 「イシュー」に関して、物事の状況によって何に注目すべきか、何を実現するべきかを明確化した上で、どのような取り組みを実施すればよいかを考える必要があると学びました。また、実践演習では、データに基づいて解決策を見出し、課題解決の手法を学べた点が大変勉強になりました。 地域データの真意は? また、地域ごとに家賃相場、土地の値段、利回りが異なることを実感しました。「イシュー」の考え方を軸に、担当エリアのデータ分析を行う際には、人口推移や主要な企業、学校などの情報、さらに家賃相場や土地値、利回りなどの各種データを収集しました。これにより、地域ごとの利回り感や土地相場が明確になり、エリアに合わせた効果的な営業手法の検討に活用できると感じました。

マーケティング入門

本質を引き出すデプスの力

なぜ表面に頼る? ある企業の事例をもとに探求しても、表面的な分析に陥る可能性があると感じました。今回の事例説明の中では、デプスインタビューという手法が特に印象に残りました。 本当のニーズは何? 浅く広く情報を収集しても、真の顧客ニーズを引き出すことは難しい場合があります。そこで、狭く深くヒアリングするデプスインタビューへの切り替えによって、より正確に顧客のニーズを把握できると感じました。 深い質問の意義は? これまで展示会で説明員を担当していた際、短時間で質問者の話を伺っていたため、どうしても表面的な情報しか得られなかったと実感しています。今後は、相手の立場に立って、真の課題を引き出すために深い質問を心がけていきたいと思います。
AIコーチング導線バナー

「本 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right