クリティカルシンキング入門

自分も実践したい学びの見える化

視覚化で伝わる? 情報を視覚化する際は、単に事実を羅列するのではなく、まとめた者自身の理解や見解を反映させることが大切だと実感しました。グラフは説明の順序を意識して配置し、関連する情報はまとめることで、伝えたいポイントをより明確に強調できると感じています。 データ管理で工夫は? 普段は情報をグラフ化する機会はあまりありませんが、個別商品の実績データをエクセルシートで管理する際には、この考え方が役立っています。そのため、従業員に自分の見解を伝えるツールとして非常に有効だと感じています。 販売強化で何だろう? たとえば、季節品の販売強化の取り組みを共有する場合には、理由の説明と合わせてこの視覚化のアプローチを活用できます。また、商品販売の目標設定や進捗管理を効率化するために、PCワークの活用機会を増やしていくことも必要だと考えています。 効率的な働き方は? 現状はプレイヤー側の業務が多くなっていますが、利益を生む行動に注力できるよう、効果的な情報の共有を心がけることが、グループ全体の利益向上につながると実感しています。無駄な作業の繰り返しを避け、効率的な働き方を目指していきたいです。

データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

クリティカルシンキング入門

戦略的思考で業務効率アップ!

ナノ単科の魅力とは? グロービス経営大学院のオンライン学習サービス「ナノ単科」を受講して感じたことをまとめます。この講座は、短期間で実践的な知識を習得できる点が魅力です。また、実務で直面する問題に対応するための具体的なケーススタディが多く、学んだ内容をすぐに応用できるところが非常に助かりました。 戦略的思考をどう学ぶ? 特に印象に残っているのは、戦略的思考の重要性について学んだ点です。講義では、意思決定のプロセスやリスク管理の方法について詳しく解説されており、これまで漠然と考えていたことがクリアになりました。実際の業務でも、学んだフレームワークを取り入れることで、効率的かつ効果的に業務を進めることができました。 講師や受講生との交流は? また、講師のサポートも充実しており、疑問点については丁寧に解説していただけました。オンラインでのディスカッションも活発で、他の受講生との意見交換が新たな視点を提供してくれました。コミュニケーション能力やプレゼンテーションスキルの向上にもつながり、総合的に非常に満足のいく講座でした。 これからも学んだことを日々の業務に活かしながら、更なる成長を目指したいと思います。

データ・アナリティクス入門

仮説と比較で拓く学びの扉

良い比較って何? 「分析の本質は比較である」という考え方を学び、良い比較を行うためには「条件を揃える」ことや「分析の目的」に沿った比較対象を選ぶことの大切さを実感しました。 どうして視野を広げる? グループワークでは、これまで自分では思いつかなかった観点が提示され、「そんな考え方があるのか」と新たな視野を広げることができました。分析の仮説立ての際にも、さまざまな意見から多くを吸収し、視野を広げて考える重要性を再認識しました。 データは役立つ? また、売上向上の施策を検討する際には、これまで感覚に頼っていたアプローチを改め、「データ分析の目的を明確にすること」や「仮説を立て、意味のあるデータで比較すること」を実践することで、より効果的な施策へと結びつけられると感じました。たとえば、あるKPI指標を追う際、「特定の行動をしている人」と「そうでない人」とで進捗率を比較することにより、具体的な違いを把握できる点は非常に示唆に富んでいます。 学びをどう活かす? この講座で得た学びを、実際の現場でどのように活かしていくか、実践してみた結果の成功事例や失敗事例も含め、これからも共有していきたいと思います。

リーダーシップ・キャリアビジョン入門

実践で磨く動機付けと任せ方

講義内容はどう感じた? 動機付けと衛生理論についての講義が非常に理解しやすく、実践に活かせそうだと感じました。 任せ方に気づいた点は? また、実行段階でのメンバーへの任せ方にも新たな気づきを得ました。具体的には、メンバーに執行責任を自覚させ、リーダーは必要最低限の干渉にとどめることや、メンバーが自ら決めたプロセス通りに業務を遂行しているか、また当初想定した結果が得られているかを定期的に確認する機会を設けることが重要だと改めて感じました。 AI演習の成果は? さらに、AIとのロールプレイを通して、メンバーのモチベーションの醸成や仕事の任せ方について、これまで十分に伴走できていなかった点に気づくとともに、今後の改善の必要性を感じました。 今後へどうつなぐ? 今後は、メンバーがどのようなモチベーションで業務を遂行しているかを意識的に捉え、動機付けのフレームワークを活用して支援していきたいと考えています。また、日々の1on1ではトピックを絞り、一つのプロジェクトに対してより丁寧に伴走するか、またはプロジェクトの進行状況を確認するための別ミーティングを適切に設けるなど、取り組みを工夫していく予定です。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

戦略思考入門

目的意識を共有する力を磨く

全員の意識合わせは? 共有の目的意識を持つことが非常に大切であると学びました。情報整理や分析のためにフレームワークを活用することは重要ですが、まずは全員が目的に対して合意を得ているか確認することが肝心です。目的が異なると、期待する成果や得られる結果が大きく変わり、最終的に目的が達成できない状況に陥ることもあります。したがって、目的意識を共通化することの重要性を再認識しました。 プレゼンで何を意識? プレゼンを行う際には、この目的意識を心に留めて取り組んでいこうと思います。私たちの組織は新しく、革新的な取り組みを設計する機会が多くあります。その中で、目的の明確化、現状の把握、課題解決に向けた取り組みを整理し、目的達成に向けた提案を行うことが求められています。そのため、提案時には特にこの点を意識して取り組む予定です。 文字化で整理どう? また、すべてを文字に起こすことも重要だと実感しました。文字化することで、目的を上流に遡りやすくなり、各種のフレームワークを活用する際に情報が整理しやすくなります。提案の機会があれば、積極的にフレームワークを活用し続け、今回学んだことを実践し続けていこうと思います。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

戦略思考入門

最速実践!戦略で切り拓く未来

なぜ戦略が必要? 今週は、現在の立ち位置から目標に向かって、最短・最速・最高効率で成果を出すための考え方を再認識しました。戦略とは、単に思考するだけでなく、決定し実行に移すまでのプロセスであり、リソースが限られる中で、どのポイントで差別化し、何を取捨選択するかが重要です。さらに、集めた情報をフレームワークで整理し、そのメリットとデメリットを理解しながら活用すること、また、抽象化と詳細化を交互に行いながら俯瞰的に物事を分析する手法も学び、大変参考になりました。特に、「今の時代、何を問題とするかを決めるのにMBAの知識が必要」というフレーズが強く印象に残りました。 戦略はどう実践すべき? 学んだ内容は多岐にわたり、日常業務すべてに即座に適用するのは容易ではないと感じています。しかし、フレームワークや取捨選択、差別化、コストリーダーシップといった視点を少しずつ取り入れ、自身の仕事の評価の時間を設けることで、次第に戦略的思考を身につけていきたいと思います。特に、来年度の事業計画策定にあたって、今回の学びを実践に反映させることを目標としています。 6週間の成果は? 6週間、本当にお疲れ様でした。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

戦略思考入門

店舗戦略に効く規模経済の極意

規模効果の見極めは? 規模の経済性に関するケースを通じて、具体的な状況下でその有効性を判断する際には、自分のビジネスの特性や置かれている環境、さらに利用するビジネスフレームワークを十分に理解することが重要だと学びました。十分な理解なく実行に移すと、誤った判断をしてしまう危険性があるため、現状にどの法則が適用できるのかを見極め、具体的なフレームワークと比較しながら判断する必要があります。 店舗計画の判断は? また、自分が担当する店舗で商品を計画する場合、単に利益が出ない、あるいはコストがかかるといった理由だけで製造量や発注量を減らしたり、品揃えを削減したりすると、その商品を求めて来店している顧客の支持を失い、店舗全体の利便性が低下して客数が減ってしまう恐れがあります。 品揃えの影響は? そのため、品揃えを検討する際には、各商品分類の欠落がないかどうかや、販売実績が低下して消費者の来店に影響を与えていないかを見極める視点が必要です。さらに、公開されているPOSデータでリピート率の高い商品や、自店舗が所在するエリアごとの傾向も参考にしながら、より実践的な判断を行っていきたいと考えています。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。
AIコーチング導線バナー

「実践 × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right