データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

戦略思考入門

競合調査と持続戦略で成功する道筋

VRIOフレームワークの意義とは? VRIOフレームワークにおけるValueとRarityは、ターゲット顧客にとって意味があるか、競合との差別化につながるかに関わる。Imitabilityは施策による差別化が持続するかを考える上で有効であり、Organizationは持続可能な差別化を組織全体で実行できるかどうかの視点である。 顧客ターゲティングの手順は? Step 1. 顧客セグメンテーションに基づくターゲット顧客の特定。 Step 2. ターゲット顧客に対して競合を意識した施策がなされているかの確認。 Step 3. 実現可能性や持続可能性を意識した施策であるかどうかの評価。 業界での差別化戦略の現状は? 自身の業界では、ポーターの3つの基本戦略に基づき、自社は製品軸での集中戦略を採用していると認識した。ただし、ターゲット顧客はかなり広範であり、差別化集中の戦略を採用している。Step 1のセグメンテーションは実施済だが、Step 2の競合調査が不十分である。今後、追加調査を行い、競合との差別化とその持続性を維持するプランを策定したい。 医療分野での新商品企画にどう取り組む? 転職先での新たな業務として、医療分野や計測機器分野での新商品の企画を担当する。顧客セグメンテーションや市場規模に基づく優先順位は設定したが、Step 2の競合動向調査や技術トレンドの把握が不十分である。これが喫緊の課題であり、8月に調査を実施する予定。その後、施策案のブレストをチーム内で行い、Step 3の実現可能性や持続可能性を意識した施策の優先順位付けを9月に実施する予定である。

戦略思考入門

捨てる勇気と集合知で挑む成果追求の旅

集合知の活用を意識するには? 戦略思考は個々の経験や背景に基づいているため、集合知を活用することが重要です。私は、自身のこだわりが不足していると感じる一方で、仲間の力を引き出し、集合知を生み出すことを意識したいと思っています。 捨てることの重要性とは? 捨てることが苦手ですが、顧客の利便性を高めるためには捨てることが不可欠です。新メンバーや外部人材の力を借りるために意見を聞いているものの、プラスアルファの会話が増え、まだ成果には結びついていません。また、外部の力を有効に活用するためにメンバーの育成が必要で、これには時間がかかるためジレンマを感じています。 フレームワークの意図的な活用法は? フレームワークの使い方について再確認しました。フレームワークは単に埋めることが目的ではなく、意図を持って物事を見るためのものです。戦略思考とは、ゴールを描き、最短最速で目的に到達する方法を考えることです。資源を有効に使い、最短最速を追求する必要があると再認識しました。 資源を最大限に活用するには? チームの資源を効果的に利用するためには、差別化や捨てることにこだわることが必要です。しかし、これらの領域が一部のメンバーに偏る傾向があり、改善が必要です。基本をおろそかにせず、マーケティングプランの作成においても、フレームワークを単に埋めるだけでなく、その正しい使い方をメンバー間で確認し合うことが重要です。 9月から12月にかけて、この点に重点を置きながら取り組みます。フレームワークの正しい使い方を確認し、メンバーのスキルアップに努め、チーム全体で成果を上げることを目指します。

クリティカルシンキング入門

初志に立ち返る仕事術

どうイシューを見極める? イシューを定めることで、問題や課題の範囲を限定し、要素ごとに分解する感覚が身につきました。日々現実で発生する問題に対して、漠然と向き合うとどこから手を付ければ良いか分からなくなりがちですが、まずイシューを特定して問題の粒度を細かくすることで、解決に向かいやすくなると実感しています。 なぜ目的を見失う? 業務では、いつの間にか手段が目的化してしまうことがよくあります。だからこそ、最初に何のために考えているのかを意識し続けることが大切だと再認識しました。以前、クラスメートから教わった「A00」という言葉を思い出します。これはある企業の共通認識に基づくもので、何のために行っているのかを問い直すためのものです。私自身は別の会社に所属していますが、迷ったときにはこの言葉を頭に置き、初志に立ち返るよう心がけたいと思います。 どう方針を決める? 今年度も終盤に差し掛かり、振り返りと来期の方針策定の時期となりました。今期の振り返りでは、組織のイシューを特定し、メンバーと共有することが必要だと感じています。また、来年度の方針作りにあたっては、上位方針を基に自組織の目標を明確にするとともに、「A00」を意識して本来達成すべきことに立ち返りながら進めていきたいと考えています。 どう直感を疑う? 日常業務においては、問題が発生するとつい直感で対策を決定してしまう癖があります。過去の経験に基づく判断で大きく外れることは少ないものの、改めて問題や課題が何であるかを言語化するプロセスを踏むことで、解決すべきポイントをより明確に見極める努力をしていきたいと思います。

戦略思考入門

目的を再定義する学び

講座で得た大切なことは? この講座を通じて、自分が大切にすべきポイントを改めて認識することができました。まず、目的を定めることの重要性を痛感しました。ゴール設定や論点を正確にするために、必ずシンプルなフレームワーク(例えば、3C、バリューチェーン、コスト削減やバリュー拡張、5F視点)をセットで活用し、全体像を一旦俯瞰することの効果を実感しています。また、ターゲットを誰にするのかを明確にし、その理解を自社だけでなく取引先にも広げる必要があると学びました。そして、限られた資源の中で本当に重要なことにフォーカスするために、不要な部分を捨てるという考えが、最終的には顧客満足につながると感じました。 日常で学びはどう変わる? これらの学びは、日常生活のさまざまな場面で応用できると感じています。ビジネスシーンにおいては、3Year planやNegotiation、サービス開発などで、目的や資源、ストーリーテリングの視点を持つことで、規模が大きいプロジェクトでも立ち返りながらクイックに分析ができるようになりました。また、自身のキャリアを検討する際には、自分のユニークな強みや差別化戦略を振り返ることが、経済価値や希少性、模倣困難性、組織への影響などの観点から自分自身を理解するための手助けとなっています。さらに、家族や同僚、友人と接する場合にも、短期から長期までの目的や現状とのギャップを確認し、優先順位を整えることの大切さを実感しました。プライベートな時間の使い方についても、あるべき姿を思い出しながら自分なりの仕組み作りを進めることができ、受講中の学びが多方面で活かされると感じています。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

マーケティング入門

顧客の心に響く伝え方の勉強中

セグメンテーションとターゲティングをどう活用する? セグメンテーションとターゲティングの重要性について深く理解しました。当初の設定とは異なる層にアプローチが成功する場合もあり、状況の変化に応じて他の層へのプロモーションや再評価が必要です。このように、広い視野と柔軟な発想が常に求められると実感しました。 訴求ポイントをどう絞る? 「誰に売るか」だけでなく、「どのように伝えるか」についても、適切な切り口や方法を確認することが重要です。また、以下の要点を学びました: 1. 訴求ポイントは2つまでに絞る(欲張りすぎると伝わりにくくなる)。 2. 顧客の共感を得て、伝わりやすい表現を選ぶ。 3. 競合との差を明確にし、差別化の軸を考える。 自部署の強みをどう再評価する? 私の部署はバックオフィス業務の集約化が主な役割ですが、業務の移管元である営業店や間接部署も顧客として重要です。顧客の認識を深めることで、部署の価値や重要性をさらに高めることが必要です。そのために、自部署の強みや特徴を再評価し、セグメンテーションとターゲティングを見直すことで、費用対効果の高い移管領域を特定できると考えています。 STP分析スキルをどう活かす? 現時点で私が担当する業務は、サービスを社外に提供している旅館施設に関連しています。ここで施設周りの分析や戦略策定を行う際に、学んだSTP分析のスキルを活用してさらに理解を深めていきます。また、部署の強みを再確認し、適切な切り口や選び方を考え続けることが、資料作成や新しい提案に役立つと感じています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

戦略思考入門

産業保健の未来を拓く4つの視点

差別化の視点とは? 差別化について学んだことを振り返ると、それは次の4つの視点から考えることが重要だと感じました。①価値があるか、②他でやっていないことか、③マネできないか、④組織全体でできるか、という点です。この視点に基づき、実際の価値を提供するためには、ターゲットや自社の強みを明確にすることが重要です。また、自社や他社業界への広い視野を持つこと、自社組織の実現可能性や持続可能性を考えることが事前プロセスとして必要だと感じました。 自社の産業保健の価値は? 私の組織に当てはめて考えてみると、産業保健分野で専門職を置くことは価値があるのか、という疑問が浮かびました。まず、①ターゲットとしての「従業員」にとって、自社の産業保健スタッフがいることは非常に価値があると考えます。なぜなら、同じ従業員として会社の現状を把握し、同じ職場で直接ケアができることが強みだからです。②委託も可能ですが、細かいケアが難しい点があります。③自社の社風や経営状況の把握には時間がかかります。④また、施策を会社組織の中で継続して行えることも重要な点です。 他業界の情報収集の重要性 さらに、他業界の産業保健情報をもっと知る必要があるとも感じました。同じ業界の産業保健スタッフの働き方についても知ることが大切です。広い視野で自社の動きを見るために、他業界にも目を向けることが必要です。例えば、IT業界の健康分野への進出や食品メーカーの新しい情報など、さまざまな業界の動向にアンテナを高く立て、情報を収集して考え続けることの重要性を改めて認識しました。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

「認識 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right