データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

「検討 × 継続」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right