データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

アカウンティング入門

テーマパーク企業で学ぶ!会計の新常識

ライブ授業の意義は? ライブ授業で、ある大手テーマパーク企業のB/Sを事例として読み解くワークに取り組みました。まず、その企業の売上の構成要素や提供する価値を明確にした上で、次のステップとして売上原価の項目について検討する手法は、前提条件をしっかり確認する重要性を実感させました。 人件費の扱いはどう? 具体的には、通常「人件費」は販管費に含まれるという認識が一般的ですが、実際には、人の働きが直接売上につながる場合には売上原価として計上される可能性がある点が印象に残りました。このように、B/SやP/Lの項目はある程度のルールがあるものの、企業ごとにその取り扱いが異なることがあり、また、会計基準の影響を受けにくいC/Fの存在意義も改めて感じました。 他業種比較は有効? 全体を通して、今回のワークで会計項目の多様性と、売上原価に関する考察が非常に的確であると実感しました。さらに専門知識を深めるためには、他の業種との比較にも取り組むと、理解が一層進むと考えています。 他業界の実例は? また、以下の点についても考えてみるとよいでしょう。 ・他の業界では、売上原価がどのように計上されるか、具体例を挙げて考える。 ・C/Fが会計基準の影響を受けないことで、特定のビジネス活動にどのようなメリットがあるのかを考察する。 なぜ財務三表を見直す? 今回の学びを踏まえ、再度他企業のP/L、B/S、C/Fを見直してみたいと思います。企業の考え方がそれぞれの財務三表にどのように表れているのかに思いを馳せながら読むことが、理解を深めるためには大切だと感じました。 環境変化をどう見る? さらに、過去の財務三表と現在のものを比較し、社会情勢や企業を取り巻く環境の変化まで考察できれば、より一層成長できると考えています。その際には、たとえばコロナ前後や法改正前後など、さまざまな出来事に注目し、根拠をもって比較基準を定めながら読み解くことが重要です。また、異業種や同業種のB/S、C/Fを、背景にある意図まで考えながら数値の裏に隠れた理由を明確にしていくことにもチャレンジしていきたいと思います。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

マーケティング入門

顧客理解を深めるデプスインタビューの力

顧客ニーズは本当に? 実際の事例を通じて、顧客の真のニーズを理解することと、自社の強み・弱みを把握することの重要性を改めて学びました。私は日頃からマーケティングと営業に携わっており、顧客と直接会話することで彼らを理解しているつもりでいました。しかし、実際にはその理解が浅かったと感じています。デプスインタビューや行動観察などの手法を学び、これらを実践することで、顧客の本当のニーズをより明確に捉えていきたいと思います。また、自社の提供するプロダクトに関してはある程度の理解があるものの、内部資源の理解はまだ浅いと感じています。バリューチェーン分析などのフレームワークを活用し、自社の強みと弱みをバランスよく見直したいと思います。 理由はどう伝える? 顧客からの声を社内の開発担当にフィードバックする際には、単に求められた機能を伝えるだけでなく、その背後にある理由を深く掘り下げることで、顧客の本当のニーズを捉え、それを社内に還元していきたいです。そして、顧客の声を基に、どの機能を優先的に開発すべきかを提案する際には、単に要望の多さで決めるのではなく、自社の強みを活かし、マーケティングのコアとなるような魅力的な機能を提案していきたいと思います。 ペインはどう解消? プロダクトのプロモーションにおいても、単なる機能紹介にとどまらず、顧客が実際に困っていることやペインポイントをしっかりと理解した上で、それを解消するイメージを具体的に提案できるよう、ネーミングや訴求文を工夫していきたいです。 必要機能は何故? 営業の場面で顧客から機能の要望を受けた際には、なぜその機能が必要なのか、具体的にはどのような業務に困っているのかを深くヒアリングしたいと考えています。また、顧客の業務現場を訪れ、実際に困っているポイントを自ら見つける機会を積極的に作りたいと思います。 体制はどう評価? 自社の理解を深めるためには、プロダクトの機能だけでなく、開発から提供までの体制や内部資源を再評価し、バリューチェーン分析を活用して、内側からの視点の偏りを無くして強みを整理していきたいです。

クリティカルシンキング入門

柱で魅せる!心に響く伝え方

なぜ柱を立てる? まず印象に残ったのは、「まず柱を立ててから理由を考える」という流れです。いきなり理由を並べるだけでは、何を伝えたいのかがぼやけてしまう恐れがあるため、最初に主張の軸となる柱を決め、その柱に具体的な理由や根拠を付け加えることで、伝えたいことが明確になりやすいと感じました。 情報整理はどうする? 振り返ってみると、情報を整理するプロセスや、順序立てることの重要性がしっかりと理解できました。具体例を交えながら説明されていた点がとても分かりやすく、実際の状況に結びつけるとさらに実践に役立つと考えられます。 意識すべき柱は? また、今後の報告やプレゼンテーションにおいて、伝えたい内容の柱を意識することは非常に有効です。伝える前に主張の軸を定め、説得力のある理由や具体例を準備することで、聞き手に理解してもらいやすくなるでしょう。さらに、日常生活の中でもピラミッド・ストラクチャーを応用することで、対話や意見交換の質を高めることができると実感しています。 対話のコツは? 今回学んだ「柱を立てて、順序立てて伝える」という考え方は、対話の中で相手の気づきや判断軸を引き出すプロセスにも通じるものがあります。いきなり結論を提示するのではなく、まず問いかけの軸を複数立て、その上で理由や背景を整理しながら話を展開することで、相手との対話がより建設的なものになると感じました。 会議準備はどうする? この考え方は、来週予定しているクライアントとの初回ミーティングの事前準備にも活かしていきたいと思います。例えば、あらかじめ問いかけの軸を2〜3本用意し、それに対応する具体例や観点を整理しておくことで、会話の中で相手から適切な答えを引き出しやすくなるはずです。さらには、提案資料の作成にも、冒頭に明確な主張(柱)を置き、その根拠や背景をわかりやすく並べる構成を取り入れてみようと考えています。 繰り返しの秘訣は? これからも、思考の整理と対話設計の両面でこのスキルを意識し、繰り返し実践することで、自然に使いこなせるよう努めていきたいです。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

リーダーシップ・キャリアビジョン入門

振り返りから見える成長への道

理論の変化はどう捉える? モチベーション理論は元々知識として持っていたものの、古い理論であるためか、解説によって解釈に多少のばらつきがある点に気付きました。理論自体は維持されているものの、時代に合わせた解釈への変化が印象的でした。 実践で迷う理由は? また、理論として理解していたものでも、実際に演習に取り組む際には考え込んでしまう場面があり、実践的に使いこなす必要性を強く感じました。 任せ方の境界は? 仕事の任せ方に関しては、以前経験した「やり方を握ったのにあれこれ口を出す」といったやり方が良くない例として挙げられており、想定内の状況であればそのまま任せるという判断と、必要な場合に意見を述べる線引きを意識することが大切だと改めて認識しました。 フィードバックはどう? また、提示された「モチベーションは主観である。だからこそ、寄り添うことが重要」という考えに共感し、フィードバック時にはメンバーに他の可能性を考える機会を十分に提供するよう努めたいと感じました。これまで自分から代案や最適解を提示してしまった点を反省し、今後はメンバー自身が考える場面を設けることを意識します。 直感と理論はどう比較? さらに、モチベーションに関しては、理論を頭に浮かべながら現状の分析や対策を練り、直感的な対応との違いを確認することで、より適切なアプローチを模索していきたいと思います。何よりも、過干渉にならずにメンバーの考えに耳を傾け、共感する姿勢を大切にする必要があると感じました。 毎日振り返る意味は? 日々の活動の中で、実践すべき行動が不足していると感じる瞬間があるため、毎朝この振り返りを確認し、昨日の行動と今日の目標を意識するよう心がけます。メンバーの数が限られているため、特別な実践の場を設けることなく、日常の中で継続的に取り組む考えです。 他リーダーの学びは? 最後に、他のリーダーの行動を観察し、感心する点があればその理由や自分でも実践可能な内容かを整理していくよう努め、より良いリーダーシップの実践を目指していきたいと思います。

データ・アナリティクス入門

ひも解く!受講生の生の声

仮説検証はどうすべき? 問題を特定した後、解決プロセスでは、網羅的な仮説を立てた上で条件をそろえ、比較検証を行う必要があります。同時に、データを収集しながら根拠を明確にする手法も有効です。 上司の指摘は何を示す? また、講義中に説明された内容ではありませんが、課題を進めていく中で思い出した上司の指摘が印象に残っています。上司は、データから状況を読み解く際、さまざまな項目を網羅することは大切ですが、事実と推測を明確に区別すべきだと述べていました。実際、読み取った情報が事実であれば仮説の妥当性を確認できますが、もし推測であれば話が大きく変わるため、この点には十分に注意が必要です。 根拠データはどう確保? 社員の要望をアンケート結果から読み解く場合は、ひとつひとつの事象に対して根拠となるデータを具体的に示すことが求められます。たとえば、「この部分からこういうことが読み取れる」といった説明が必要です。 低正答率の真因は? また、教育受講者に実施する理解度チェック問題で正答率が低かった場合には、単に「理解不足だから」と結論付けるのではなく、問題解決プロセスを分解して検討することが重要です。具体的には、社内教育における教材とチェック問題の内容の齟齬、チェック問題自体の意図が上手く伝わらなかった可能性、あるいは回答者側の問題(例:注意不足)など、課題が生じたプロセスを一つひとつ切り分けて検証する必要があります。 ヒヤリハットの要因は? さらに、6月からは昨年度まとめたヒヤリハットに関するデータの分析が開始されます。ここでは、会計処理中に「冷やっとした」や「ハッとした」といったミスにつながりかねない状況を取りまとめています。データ項目の数や回答レベルが一定でないため仮説を立てるのは難しいですが、ロジックツリーを活用して全体を網羅的に整理し、what(何が)、where(どこで)、why(なぜ)、how(どのように)という観点から現状を整理し、考えの根拠を丁寧に示しながら、最終的にはhowの提案に結びつけていく方針です。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

「実際 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right