クリティカルシンキング入門

ピラミッドストラクチャーでプレゼン力アップ

日本語を適切に伝えるためには? 日本語を正しく使い、自分の考えを適切に相手に伝える重要性を強く感じました。普段は主語と述語を意識せずに生活していましたが、今回改めて強く意識する必要があると実感しました。 文章を俯瞰して評価し、手順を踏んで書くことも重要だと感じました。この整理一つで、決裁が取れるかどうかが大きく変わるのです。 ピラミッドストラクチャーの活用法とは? 特に、ピラミッドストラクチャーを活用し、メインメッセージからトップダウンで支える要素を分解していく手法が有効です。社長への決裁や報告の際に、この手法を使って資料を整理すれば、資料だけでも伝わると感じました。 また、セミナーや勉強会など多くの人に何かを伝える際にも、どのような情報をどの順序で伝えると相手が理解しやすいかを整理できるため、効果的に情報を伝えられると感じました。 社内での実践機会をどう活かす? 今後、社内で勉強会を実施する機会があるため、その際の目的やテーマの整理から、内容や構成に至るまで、さまざまなシーンでピラミッドストラクチャーを活用できるイメージが湧きました。 直近では、月間事業部報告の機会があるため、報告資料にこの手法を活用し、簡潔かつ論理的に報告内容をまとめる予定です。

クリティカルシンキング入門

問いたてが変える業務の未来

問いたては何だろう? 講義全体を通して、問いたてと構造化のプロセスを自分なりに習得できたと感じています。普段の業務では、これらの基礎的な手法を用いることが当たり前でありながら、問いたてが疎かになることで前提が揺らいだり、構造化の要素が不足して納得感が得られないと実感しています。 どう応用すべき? 講義を通じて、問いたてと構造化プロセスの重要性を再認識できたのは大変意義深いことでした。この経験を活かし、日常業務にどう応用できるかをさらに考える必要があると感じています。 なぜ把握困難? また、問いたてが十分に行われない原因として、自己の思い込みや落ち着きのなさから、情報を正しく把握できなくなっている状況が挙げられます。この問題を解消するためには、一旦冷静になり、手書きのメモなどを活用しながら、まず問いたてや構造化の要素を書き出すことが有効だと考えます。 対話で何が変わる? さらに、その後は自分自身の言葉で他の人と対話し、問いたてに対する回答が十分かどうかフィードバックを得るようにすることで、確かな理解につながるでしょう。日々の業務において、即レス対応が求められる中で、トライ&エラーを繰り返しながら、これらのプロセスを確実に習得していきたいと思います。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

戦略思考入門

ビジネス戦略が日常に生きる瞬間を学ぶ

戦略思考をどう活用する? 「戦略思考」は、ビジネスにおけるテクニックや難しい学問として構える必要はなく、人生の些細なことにも役立てられる考え方であるという点が印象に残った。実践演習を通じて、正答を追い求めて悩む場面もあったが、日頃何気なく行っていることを体系的に整理すると「こういうことなんだ」と帰納法的な結論に至ることができ、心地よかった。 伝え方をどう工夫する? ちょうど予算と中期計画のレビューを行っているので、客観的な意見を論理的に伝えられるよう、学んだことを活用したい。また、身近な例に落とし込むことが非常に理解しやすかったので、比喩や例えも使ってわかりやすく伝えていく。難しい言葉はなるべく使わず、伝え方のかっこよさよりも、伝わることに重きを置く。 深みある言葉を発するには? 幅広い知識や教養、人間としての落ち着きがなければ、言葉に深みが出ず、聴くに値しない意見となってしまう。様々な情報に触れ、貪欲に吸収し、役に立ちそうなものを選ぶ力を磨くのではなく、すべてを役立てられる力を磨く。無駄なものはないと信じて、傾聴し、相手を尊重する姿勢を大切にしていく。 客観性の担保といっても、誰が発するかは無視できない要素だからである。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

クリティカルシンキング入門

問いで切り拓く学びの未来

イシューはどう設定? イシュー設定については、まず問いの形で課題を明確化することが重要です。問いに固執しすぎず、議論が進む中でもし批判があったり、メンバーがついていかなくなった場合は、イシュー自体を見直すサインと捉えるようにしましょう。 分解と統合は何故? また、問題を分解する際は、分解と統合を繰り返しながら、着目すべきポイントをストックしていくことが基本です。たとえば、人、商品、時間、季節、場所など、さまざまな視点(箱)から情報を整理することで、議論の軸が固まります。そして、耳にした情報の構成要素を分析し、着眼点をストックする習慣をつけることが大切です。 会議はどう進める? さらに、社内外の打ち合わせ時には、まずイシューを問いの形で設定することを心掛けます。議論中に論点がずれないよう、事前に決めた目標を振り返るなど、焦点がぶれない工夫が必要です。イシューが決まった後、問題の分解に苦労している場合は、切り口のストック化を進める取り組みが効果的です。 分析習慣はどう有効? このように、聞いた情報をもとに分析し、着眼点を増やす習慣を身につけることで、打ち合わせや議論がよりスムーズに進むようになります。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

クリティカルシンキング入門

実務に即役立つ!ナノ単科の魅力

ナノ単科の実務への即応性とは? グロービス経営大学院のオンライン学習サービス「ナノ単科」を受講して得られた最大の利点は、学習内容が実務に直結する点でした。授業で学んだ理論やフレームワークを即座に仕事に応用でき、理解が深まるだけでなく、実際の業務効率も向上しました。 オンライン学習の柔軟性を活かすには? また、受講中に感じたのは、オンラインならではの柔軟な学習スタイルです。自分のペースで進められるため、忙しい日常の中でも計画的に学ぶことができました。特に、自宅での学習が可能な点は非常に助かりました。 ディスカッションで得る学びの深み さらに、同じ志を持つ他の受講生とのディスカッションや情報交換も、学びをより深める大きな要素となりました。他の受講生の意見や視点を知ることで、自己の考え方やアプローチを客観的に見直す良い機会となりました。 ナノ単科がもたらすライフワークバランス 総じて、グロービスの「ナノ単科」は、理論と実務を効果的に結びつける学びの場であり、多忙な社会人でも効率的に学べる内容であると感じました。これからも、この学びを活かし続けたいと思います。

データ・アナリティクス入門

平均値だけじゃ見えない真実

データはどう活かす? データは単に眺めるだけでは意味がありません。他のデータと比較することで初めてその意味が明らかになります。また、数値化やデータの加工を行うことで、より多くの情報が見えてきます。代表的な統計量を見ることで全体の傾向を把握できるものの、平均値だけではデータのばらつきを捉えきれないため、標準偏差の確認やグラフ化によって視覚的に捉えることが重要です。 グラフ作成はどう選ぶ? 多くの数値データを扱う際には、経時変化を示すグラフを活用することも大切だと感じます。ただし、複数の要素が存在する場合、どの部分をグラフ化するかの選択は慎重に行う必要があります。あらかじめ目的に沿った問題箇所を整理し、具体的にどの要素が有効かを明確にした上でグラフ化する習慣を身につけたいと思います。 数値の裏側を探る? 業務でデータを加工したり、調査を行う場合、平均値が頻繁に目に入りますが、その数字の背後にあるばらつきを意識することが欠かせません。単純な数字に惑わされず、加重平均や幾何平均といった他の代表値も適切な場面で選択できるように、知識を深めていきたいと考えています。

「情報 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right