データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

アカウンティング入門

損益計算書が語るビジネス秘訣

損益計算書で何が分かる? 損益計算書を確認することで、同じ業種内でもターゲットやコンセプトが異なると、かかる費用や得られる利益に違いが生じることを実感できました。規模が異なれば、たとえ利益率が同じでも利益額に差が出るため、最初のコンセプト設計やマーケティングをしっかり行い、ビジネスモデルをしっかり組み上げる必要があると感じました。初期費用が大きいビジネスは、成功すれば大きなメリットが期待できる一方で、リスクも高いという点も理解できました。 重要な意識ポイントは? 具体的には、以下の点を意識しています。 ① 安定しているビジネスでも、どこから利益が生み出され、経費が適切なのかを検証すること。変動要素をしっかり確認できるようになりたい。 ② 現状を踏まえて次期の事業を検討し、アドバイザーと対等に話ができるようにすること。 ③ これまでの損益計算書をもう一度見直し、無駄なコストと利益がどこから生まれたのかを考え直すこと。 ビジネス課題は? 例題では、利益率が予想より低く、それでビジネスが成り立つのか、またリスクが大きいのではないかと感じる部分がありました。自分のビジネスは派手さこそないものの安定しているため、経営に対する視点が大雑把になりがちな点が課題だと感じます。さまざまなビジネスの事例を参考に、経費・利益・リスクについてどのように考えるべきかを今後検討していきたいです。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで拓く未来の道

理想に近づく方法は? 自分の理想とする姿や目標に直線的に到達することは難しく、少しずつ方向を変えながら目標に近づくという考え方に、非常に納得しました。キャリアサバイバルでは、他者からのフィードバックを謙虚に受け入れながら、現在の仕事が果たして自分に合っているのかを自問自答し続け、自分の価値観をキャリアアンカーという形で明確化することが重要です。そして、その上で新たなキャリア目標を設定していきたいと考えています。 フィードバックで道は変わる? フィードバックの重要性を常に意識し、どんな小さなプレゼンテーションやプロジェクトであっても、上司だけでなく他の参加者や先輩・後輩からのフィードバックを積極的に求めたいと思っています。フィードバックの評価が高ければ、その会社で成功する確率が高いと判断できますし、低ければ何が重要視されているのかを知り、それが自分の価値観と合致しているかどうかを吟味できます。自分の価値観と異なる場合、転職や社内でのキャリアチェンジといった選択肢を検討する余地もあります。 小さな改善はどう見つける? 週単位や月単位の業務でもフィードバックを求めることで、自分の改善点を探し続けます。また、半期ごとの目標管理のフィードバック面接では、自分のどの点が重視されたのかを明確化することに注意を払います。これが、自分の価値観と会社の価値観との一致を確認するための重要な基準となります。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

クリティカルシンキング入門

ピラミッドが導く説得の秘訣

相手に伝わる方法は? 他人に自分の主張を伝え、行動を促すために必要なスキルを学びました。特に、ビジネスの現場では、相手の立場に立ってわかりやすく伝えることが何よりも重要であると実感しました。その第一歩として、主語や述語を意識したアウトプットの基本を学びました。 論理の重ね方は? また、自分の主張を裏付ける論理を構造化する手法にも注目しました。すぐに結論に飛びつくのではなく、複数の切り口から論理を重ねることで、説得力や理解しやすさが向上することを体験しました。 仮説の組み立ては? さらに、不確実性の高い新規事業の推進においては、仮説を立てる際にピラミッドストラクチャーを意識することが有効だと感じました。まず答えのない課題を明確に特定し、数字を用いた分析や整理を行いながら論理を組み立てていくことの重要性を再認識しました。こうしたプロセスにおける、論理の柱をしっかり考える手間が、後の認識のずれや意思決定の遅延を防ぐ鍵であると考えています。 報告会の改善は? これからは、毎週の事業報告会で使用するフォーマットをピラミッドストラクチャー型に変更し、主張の根拠となる論理を明確に伝える工夫を続けていきます。また、部下が発信する意見に対しても、構造化されたアウトプットを意識したコミュニケーションを心がけ、より正確で効果的な情報伝達を目指していきたいと思います。

データ・アナリティクス入門

仮説整理で未来を切り拓く

問題解決の秘訣は? 問題解決の手順として、「What(問題は何か)」「Where(問題はどこにあるか)」「Why(問題はなぜ起きたか)」「How(問題はどう解決するか)」の4ステップを学びました。これまでなんとなく行っていたことやできていたことも、言語化することで抜け漏れなく整理でき、仮説や結論に対する自信が深まりました。 仮説思考はどうする? また、仮説思考については、問題解決の仮説と結論の仮説があり、それぞれに過去・現在・未来の視点が存在するという考え方を知り、とてもすっきりしました。これまで様々な場面で仮説を立ててきましたが、今回の整理方法を取り入れることで、何を考えればよいかがすぐに浮かぶようになりました。 計画立案を学ぶ? 事業計画の立案のプロセスにおいては、これまでなんとなく進めてきた作業を、今回学んだ解決のステップとフレームワークを意識して取り組んでいきたいと思います。自分で考えるだけでなく、他者に説明する際にも納得してもらえるよう、言葉にして伝えられる方法として活用していきます。 課題整理は進んでる? さらに、事業計画の立案にあたって複数の課題と対策が存在する中で、重要度の高い順に今回のステップやフレームワークを適用し、ゼロから考え直すことで、問題を正しく捉え、解決策が十分かどうかを抜け漏れなく検討していきたいと考えています。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

マーケティング入門

読んで実感、働きやすさの要因とは?

ニーズとペインポイントを考える理由は? 今週の事例でもあったように、ニーズだけでなくペインポイントまで考えると、何を求めているかが明確になります。このアプローチは非常に論理的だと感じます。 コンビニ商品分析で得るものとは? 真のニーズを考える際に、コンビニの商品が変わる様子を観察するのは興味深いですね。毎週変わる商品は、誰のニーズを満たそうとしているのかを考える良い訓練になります。 業務改善にペインポイントは役立つ? 自社の職場における業務改善も、ペインポイント探しそのものだと感じました。改善エリアを見つける際に、皆が避けたがる業務や残業が多い業務には、必ず何かしらのペインポイントが存在すると考えられます。上位報告に関してもペインポイントを含めた真のニーズを考えながら資料を作成することで、質の高い資料が出来上がると考えました。 上位報告での良いサイクルの作り方は? 上位報告においては、ニーズに基づいて資料を作成し、報告後にそのニーズが満たされていたかを周囲に確認することで、良いサイクルが作れます。また、部下との接し方、面談や進捗管理においても、ニーズとペインポイントを意識して話すことが重要です。 事業探索にカスタマージャーニーの重要性は? 自領域の業務、特に事業探索ではカスタマージャーニーを意識することが大切だと感じました。

「意識 × 高い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right