データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

仕組みを解読、未来を拓く

ボトルネック、どう見抜く? 採用プロセスをステップごとに区切り、どこにボトルネックがあるのかを特定していく手法が印象的でした。要素を細かく分解し、整理・比較することで、問題の把握と理解が非常にしやすくなった点が魅力的です。 販促効果はどう検証? 自分の勤務先でも、売上に至るまでのプロセスが「申込件数」「審査承認」「成約」などに大別できるため、より細かく検証したいと考えています。さらに、担当する各販売店ごとに分け、各特徴ごとにグループ分けを行って共通点を洗い出すことで、具体的な対策に結びつける取り組みを行いたいと思います。まずは、特定の支店に焦点を当て、その販売店データを集め比較・検討します。その結果、もし明確な特徴が見えてグルーピングが可能となれば、詳細な報告書を作成し、リベートやアローワンスなどの販促策に活かす予定です。また、A/Bテストが可能な場合は、さらなる効果検証にも挑戦したいと考えています。

データ・アナリティクス入門

クイズで学ぶ比較と本質

比較で見える本質は? 「データ分析の本質とは何か」という視点から、『比較』の重要性に気付かされました。目的達成のために、どの要素を比較すべきかを考える際、目先のことにとらわれず、本質に目を向ける必要があると実感しました。特にクイズ形式の事例は、この点を分かりやすく示してくれました。 経営とデータ活用は? また、経営においては経験や勘も重要ですが、成長とリスクテイクのバランスをとるためにはデータ分析が欠かせないと感じています。現状、社内に十分なデータ活用の文化が根付いていないため、まずは意思決定に役立つデータを整備し、データ活用への理解を深める啓発活動に注力したいと思います。 信頼をどう築く? さらに、データ分析結果の有効性を社内で理解してもらうためには、まず信頼できるデータを整えることが重要です。必要なデータの所在すら不明な状態からのスタートとなるため、地道な取り組みを積み重ねていく覚悟です。

データ・アナリティクス入門

目的と仮説で磨く分析の力

分析ってどう理解? 分析とは、ものごとを分け、比べることだと改めて理解しました。具体的かつ明確に整理することで、より良い意思決定に役立てる手法であるという基本的な定義を再確認できたと感じています。分析を進める上では、目的設定と仮説設定がいかに重要かという点が特に印象に残りました。 目的設定は何が必要? まずは、分析の目的を明確にして、どの意思決定に結びつけたいのかを整理することが大切だと考えています。その上で、目的に合わせた仮説を立て、膨大なデータの中から役立つ情報を見極める方法を実践していきたいと思います。 振り返りの進め方は? また、自身の業務を振り返り、データを活用して改善したい点を整理し、どのようなデータを収集しているのかを把握することから取り組みたいと考えています。一つのテーマに絞り、目的設定、仮説設定、そして分析の順で自分なりに実践を進めることで、より良い結果を得たいと思います。

クリティカルシンキング入門

実践で身につく戦略の極意

実践例の学びは何? マクドナルドの実践例を通じ、これまで学んだデータの分解や加工の考え方が非常に実践的に活用されていることを実感しました。課題が明確になり、その解決策を考えるプロセスは、実際の事例に基づいているため、理論だけでなく現場の感覚も身につけることができ、非常に腹落ちしました。簡単な問題設定でしたが、大企業の経営戦略を疑似体験できたことで、臨場感を持って思考することができたと感じます。 仕事にどう活かす? また、これを自身の仕事に置き換えると、顧客への営業やマーケティングの場面で大いに役立つと考えています。顧客から自社商品やマーケットに関する問い合わせがあった際、本質的に何を求めているのかを深く考えることで、的確な回答が可能となり、その結果、顧客の信頼を獲得できるのではないかと思います。今後は、会話の中で常に「本質的な課題は何か」といった点を念頭に置いて対応していきたいと考えています。

データ・アナリティクス入門

目的意識で切り拓くデータ分析

目的は何のため? データ分析を始める際は、まず「何のためにこのデータを分析するのか」という目的意識を常に持つことが大切です。あらかじめ、どのような答えが得られるかをイメージしながら、分析に取り掛かると良いでしょう。 仮説と可視化の意義は? また、データ分析のステップとして、仮説思考に基づいたロードマップを設定することで、全体の目的や認識を共有し、より納得のいく結果が導けます。さらに、データを可視化すると、さまざまな視点や切り口、解釈の可能性が広がり、複数の判断軸を持つことができます。 実務の判断はどう? 実務では、データを活用する「ここぞというタイミング」を見極めることも重要です。そのために、何を解決したいのか、どのようなデータが必要か、データの収集方法やその後の展開についても具体的に考える必要があります。まずは、手元にあるWeb解析のデータを確認し、整理を進めてみましょう。

クリティカルシンキング入門

分解で見える意外な示唆

分解から何が見える? データを分解して傾向がはっきり見えなくても、それを失敗と捉える必要はないと感じました。たとえば、「傾向が無いことが分かった」や「別の切り口があることが分かった」という結果も、データの捉え方の違いを示しており、有用な示唆と言えます。 正しい表記はどう守る? また、「分かる」は必ず「分かる」と表記するようにし、データの分解を丁寧に行うことの大切さを改めて実感しました。実際にデータを細かく分ける際は、手を動かすこと、機械的にただ分けるだけでなく、複数の切り口で考えることが重要だと考えています。 売上の分解方法は? さらに、メンバーの売上を整理し、今後の対応を検討する際には、合計の売上だけでなく、関連する項目ごとに分解することが必要です。その際、本当にこれだけで良いのか自問し、他のメンバーと相談することで、より具体的な分解と傾向の提示ができるよう努めたいと思いました。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

データ・アナリティクス入門

学びの先に広がる未来

知識活用はどうする? これまで自己研鑽してきた内容について、ただ知識を積み重ねるだけでなく、具体的にどのように活用するかまで考えてこなかったと実感しました。すぐにはイメージしにくい現実の場面で、学んだ知識がどう生かされるかを真剣に考えることで、新たな視点が得られると感じています。そのため、単なる習得にとどまらず「学習の先」をじっくり考える時間を持つことの大切さに気づかされました。 データの見直しはどう? また、直近ではデータ分析の作業に直接関わることはありませんが、自身が担当する事業におけるさまざまなデータについて再度整理する必要性を感じています。どのようなデータが存在し、どのように収集され、どのような活用方法(結果の仮説)が考えられるのかを洗い直すとともに、これから集めるべきデータについても検討し、具体的な収集方法を年度末までに模索し、準備を始めることができるのではないかと思いました。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。
AIコーチング導線バナー

「結果 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right