戦略思考入門

選択と捨てる勇気で生み出す価値

戦略の選択は? 戦略における選択、つまり「捨てる」ことについて、ITベンダーの営業マンシミュレーションで学びました。個人のリソースには限りがあるため、何をやるか、何を捨てるかの優先順位を付けることが重要だと再確認しました。 判断の軸は? 惰性で業務を進めるのではなく、しっかりとした判断軸を持ち、それに基づいて考える必要があります。優先順位を付ける方法として、定量的なエビデンスに基づいた考え方に加え、ROI(投資対効果)を考慮することも大切であることを新たに認識しました。 視野を広げる? また、個人的な視点だけでは見落としがあるかもしれず、全体を俯瞰できない可能性があります。このため、集合知を活用し、他者と意見交換や相談を行うことが重要だと感じました。 新たな気づきは? 動画で得たその他の気づきとしては、捨てることが顧客の利便性を増す場合があること、惰性に流されないこと、新参者の意見を聞くこと、餅は餅屋に任せることなどがあります。特に、垂直統合からの脱却や外注の活用について学びました。 業務の見直しは? 現在の職務では、効率化・高品質化を中心に取り組んでおり、取捨選択をある程度行っていると認識しています。しかし、実際に引き受ける業務には無駄やムラが含まれている可能性があります。これを選別し、より良い処理方法を見つけるために、今回学んだことを活かしたいと感じました。ただし、人間との関係も大切なので、単に定量的な結果や事実を伝えるだけでなく、依頼者の心情に寄り添った対応が重要だとも感じました。 引き算の意味は? 既存業務や新規業務に対して、足し算だけでなく引き算の視点を持つことを意識します。捨てる選択をしてこなかったので、組織としても個人としても抵抗を感じるかもしれませんが、定量的な数値結果や俯瞰的な視野を持ち、情報共有や提案方法を模索していきます。これらを考慮して、同僚や上司に対して恐れず提案する勇気を持ち続けたいと思います。「それ、無くても困らないのでは?」という問いを自分に向けていこうと思います。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

デザイン思考入門

共感と疑問が導く学びの道

手順はどう大切? デザイン思考では、手順をきちんと踏むことの重要性を実感しました。デザインプロセスを分解し、グループワークを通じて多様な意見に共感する体験が非常に印象的でした。共感とは、必ずしも自分がポジティブに捉えなければ伝わらないということに気づき、考え方自体を受け入れるための大切な要素だと感じました。 顧客行動の本質は? また、顧客の行動に注目することで、本質的な課題の糸口を見出すことができると学びました。現象面だけに目を向けるのではなく、これまでの経験からくる先入観を捨て、顧客を深く理解しようとする姿勢が、デザイナーとしては非常に重要だと改めて感じました。 言語化で何が変わる? 学びのコツとして、言語化、教訓化、自分化のプロセスがあることに気づきました。感じたことを言葉にすることで思考が整理され、ケースごとの客観的な分析を通じて新たな知見が得られると理解しています。従来は漠然と状況を把握し、過去の知見に頼っていた部分が、具体的な分析を行うことによってより豊かな学びへとつながると考えます。 WHYを掘り下げる? 企業支援の場面では、クライアントに自ら選択できる情報や分析結果を提供するだけでなく、お客様の行動を観察することに加え、なぜそのような考えに至ったのかという「WHY」を繰り返し問いかける姿勢が求められると感じました。例えば、商品企画の段階では、技術視点だけでなく、お客様が何に困っているのか、なぜそのような状況になったのかを徹底的に掘り下げることで、議論や仮説にとどまらず、お客様の実情を実感していただくことが重要だと思います。 どう選択肢を広げる? さらに、企業支援の現場で「WHY」を追求する思考を実践しながら、選択肢を広げるための説明ができるよう努めたいと考えています。自身でも、適切な質問を工夫して「WHY」を促進するだけでなく、自分のバイアスに気を留め、相手の意見に対しても好奇心を持って傾聴する姿勢を大切にしていきたいと思います。

クリティカルシンキング入門

思考の整理で得られた新しい発見

文章の明確化ポイントは? 文章をうまく伝えるためのポイントはいくつかあります。まず、主語と述語を明確にし、読点の位置を意識します。また、修飾語を使って補足し、一文を長くしないよう心がけることが重要です。 論理的に書く方法は? 文章を書く際には、まず自分の思考を論理的に整理することが必要です。ピラミッドストラクチャーを活用して、結論を中心に大きな柱を立て、それを細分化して具体化します。これにより、伝えたい情報や相手が知りたい情報を効果的に整理できます。重要なのは、情報を漏れなく整理することです。 双方向の理解をどう実現する? 具体的な状況に応じて、「相手が知りたい情報が伝わる」「自分が伝えたいことが伝わる」という両方を実現する内容を目指します。これにより、メールやチャットでのやり取り、報告資料の作成やプレゼンテーション、社内外への情報共有が円滑に進みます。 社内コミュニケーションの工夫は? 私たちの会社では、文章でのコミュニケーションが主となっています。そのため、チャットツール内でのやり取りでも簡潔で読みやすい文章構成を意識します。「全体像」から「骨組み」、「具現化」へと進む構造を念頭に置いたアウトプットを心掛けます。 言語化スキルの向上方法は? また、私はピラミッドストラクチャーを使って様々な視点からの分析結果を簡潔に伝えることを心掛けています。「結論」から入り、「根拠」そして「具現化」という構造で報告を行うことで言語化のスキルを向上させます。これは、最終的に思考力を鍛えることにつながります。 チャットでの要点整理法とは? チャット文章では、要点がまとまった伝え方も重要です。「相手が知りたいこと」や「自分が伝えたい要点」が明確な文章構成を心掛けます。論理的な文章を書くことで、会話の中でも即興で要点を伝える能力を育てます。また、異なる部署とコミュニケーションを取る場面が多いため、専門用語を多用せず、相手が理解できる表現方法を意識します。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。

戦略思考入門

学びの視点を広げる経済性の理解

規模と範囲はどう違う? ■学び 「規模の経済性」と「範囲の経済性」について学びました。規模の経済性に関しては、初めは「大きければ良い」という認識がありましたが、実際にはコスト単価が上がることや、固定費や変動費を含めたより包括的な理解が必要であることに気づきました。 範囲の経済性については、複数の事業を運営することで経済性を高めることができるという概念は理解していたものの、「範囲の不経済」になる可能性も考慮しなければならないという新しい視点を得られました。その結果、範囲の経済性が競争優位性となるかどうかを十分に検討する重要性を認識しました。また、範囲の経済性を追求する場合、安易な多角化には注意が必要です。 業務効率は上がるの? ■規模の経済性を活かすために 業務の標準化と集約により、同じ業務を一つの部署やチームに集約することで、専門性を高め効率的な処理が可能になります。たとえば、経理業務や人事総務業務を一つの部門に集約し、共通のシステムやツールを導入することで、処理時間を短縮できます。 また、複数の部署で共通して利用できるツールを導入することで初期費用を分散し、学習コストを削減することが可能です。例として、クラウド型のグループウェアや会計ソフトを導入することで、情報共有を円滑にし、業務の可視化を図ることができます。 意見共有は役立つ? ■学びの復習と意見収集 学んだことを継続して活用するために、反復して経験することが重要です。具体的には、学んだフレームワークを用いて自分の会社や周辺環境に当てはめてみると良いでしょう。耳慣れない単語を調査し、一度口にしたりすることも有効です。頭を動かし、手を動かし、口を動かすことで学びを深めていきたいと思います。 さらに、自分が収集した情報をもとに徹底的に話し合い、意見を集めることで様々な発見があります。ナノ単科を共に学んだ同僚たちと意見を共有し合うことで、新たなシナジーを生み出すのも面白いと考えます。

戦略思考入門

目標設定と視野を広げる学びの旅

どんな学びを得た? これまでの学びを振り返りつつ、実際にケーススタディを通じて手を動かし、ライブ授業での対話を通じて、ビジネスから私生活にまで役立つ考え方を再確認することができました。 目標設定の意義は? 特に重要だと感じたのは、明確な目標設定です。何事にもゴールが見えない状態で始めてしまうと、最短・最速での到達が難しく、結果的に限りあるリソースを無駄にしてしまうことを再認識しました。 どのポイントが大切? 学習を整理すると、以下の5つのポイントが挙げられます。 1. 明確なゴールの設定:目標や得たい結果を明確にし、それに基づいて進む道のりを計画することが必要です. 2. 視野を広げ整合性を取る:ビジネスフレームワークを活用することで、視野狭窄を防ぎ、経営者の視点で物事を俯瞰することが重要です。思考には無意識のバイアスがかかりやすいため、広い視野と整合性を保つ努力が求められます. 3. 差別化:自分や自社だけのコアコンピタンスを育てることが重要です。同じことをしていると埋もれてしまいますので、独自性を伸ばして価値を高める努力が必要です. 4. 選択と捨てること:限りある資源を有効に活用するためには、費用対効果の高い選択をし、不必要なものは思い切って捨てることが重要です. 5. 本質の理解と思考:経済のメカニズムを理解し、指数関数的な考え方を取り入れることが求められます. 実践へどのように動く? これらを実践するためには、分析力、フレームワークの活用、コミュニケーション能力、そして情報収集能力の向上が必要です。特に、フレームワークを使いこなすためには、実践を重ね、必要に応じて新しいフレームワークを模索することが効果的です。また、コミュニケーションにおいては、相手の言葉をきちんと聞き、返報性を意識して行動することで、より良い関係を築くことができます。情報収集においては、新しい情報に敏感であることが求められます。

「結果 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right