戦略思考入門

整理整頓から学んだ「捨てる」判断の極意

捨てる判断が重要な理由は? 自身の職場では「捨てる」判断が関係者から賛成を得やすいパターンがあり、それは大半が「自分も面倒臭い、無駄だと思っていたことがなくなる時」です。反対に反発を受けやすいのは、新しいことを始めるために古いことを捨てる時で、「新しいことの方が工数が多く面倒そうだ」と感じる場合が多いです。これはどこの職場でもある程度パターン化されており、傾向が見えやすいと思います。 お試し期間の意義とは? 現在の職場では、新規プランを継続するかを検討するために「お試し期間」を設け、関係者からヒアリングを行いつつ、時にはあっさりと「捨てる」決断もしています。これは十分なリソースがあるからこそ実現できることですが、リソースの有無に関わらず、「捨てる」際の指標を明確にすることが重要だと感じました。 整理整頓で気づいた問題点は? 日常的に「整理(整頓)」することは習慣化できていますが、整理整頓の選択肢として「捨てる」ということは無意識的に除外していることに気付きました。それは、ブランドの事例のように中途半端な状態に陥らないかという点を危惧しているからです。トレードオフ関係の有無といった要素の洗い出しが十分に行えていないことや、自分の判断に自信がないことが根底にあるのではないかと考えています。難しい判断であるからこそ、関係者の納得感を得るために「捨てた場合」だけでなく、「捨てなかった場合」も含め、あらゆる方向から検討が必要です。それに加え、スピード感を意識しながら実行できるようになりたいと感じています。 技術伝承の課題はどう克服する? サービス技術の伝承は大別して、①ある程度マニュアル化されているもの、②経験者から教わるものの2種類があります。後者が圧倒的に多く、昔からの慣例に縛られることが多いため、「捨てる」判断が特に難しいです。そんな時に力を発揮するのは「時間」です。特に私たちの現場では「残された時間」や「安全の観点」は絶対に他のものとトレードオフの関係にならないということも今回、言語化・明確化できたことは収穫です。 過去の業務態度に学びはある? 過去の業務態度を思い返すと多数のプロジェクトが動いていた際には、目まぐるしい日々の中でROI(費用対効果)検討の「時間配分1%あたりの利益率の算出」といった表作成に時間を割くことは難しく、余裕も感じていませんでした。振り返ると、工数管理は実施していたものの、ざっくりしたプランニングであったため無駄な工数が発生していたり、リードタイムをさらに短く設定することが可能な部分も多かったと反省しています。

クリティカルシンキング入門

視点が広がる成長の軌跡

どうして客観的に考える? クリティカルシンキングは、客観的思考を持つもう一人の自分を育て、ビジネスにおいてリスクを回避するための基盤となります。頭の使い方を理解し、自分の考えを客観的かつ論理的に検証することで、状況を多角的に捉えられるようになるのです。 どうして視点を広げる? また、文章では「視点」「視座」「視野」の3つの視を意識することが強調されています。無意識のうちに制約を設けてしまうことがあるため、現状の考え方に制限がかかっていないかを点検しながら、思考の枠を広げていくことが求められています。 ロジックツリーは有効? 思考の偏りに対処するには、ロジックツリーなどのツールを活用し、全体を部分の集合に分解する手法が有効です。これにより、情報をもれなくダブりなく整理するMECEの原則にも沿った考察が可能となり、主観的な直感や経験だけではなく、客観的な説明責任を果たすための表現や方法が身につきます。 どうやって効果的に伝える? 実際の業務では、データ分析やデジタルマーケティング、カスタマーエクスペリエンスなど、分析結果を伝える機会が多くあります。社内はもちろん、一般の方向けにもわかりやすく説明できるよう、客観的な視点をもとに筋道を立てた情報伝達を実践することが重要です。自分自身の思考や表現のクセを可視化し、書き起こすことで新たな発見や柔軟な考え方を身につけることが期待されます。 人間らしさはどう守る? さらに、デジタル化の波が進む中でも、人間らしさは大切にすべき要素です。新技術を取り入れると同時に、感情や言葉を使って相手の心に響くコミュニケーションを磨くことが、これからのイノベーションにとっても重要なアプローチとなります。 振り返りで何を発見? 講座を振り返る際は、学んだ基礎を業務の前後で意識し、実際にどのように活かせたかをシミュレーションしてみるとよいでしょう。普段無意識に行っている前提について自分で気づくとともに、実践の中でその濃度を計測し、改善のポイントを見つけ出す取り組みが効果的です。 誰に、どう伝えるのか? また、説明する際は、誰に伝えるのかを意識し、限られた時間内に要点を詰めて述べる練習が推奨されます。場合によっては自分の説明を動画で確認することも、自己評価や改善に役立ちます。 書く力はどう伸ばす? 最後に、書くことも重要な学びの一環です。文章による要約や表現のクセをチェックしながら、論理性と客観性を深堀するトレーニングを継続することで、自分の伝える力が着実に向上することを実感できるでしょう。

データ・アナリティクス入門

逆算で探る課題解決のヒント

結果から問題設定は? 問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。 数字の裏側は? また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。 分析の切り口は? さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。 現状と理想は? また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。 解決策の整理は? 問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。 その他の注意点は? 加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。 戦略分析はどう? 広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。 定性情報は何? こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。

データ・アナリティクス入門

数字が魅せるSNS成功ストーリー

計算重視で成果は? 数値で表れない効果を具体的な数値に置き換える方法は非常に新鮮でした。直感だけに頼るのではなく、計算に基づいてコンバージョンレートを算出し、その結果を判断に反映させる重要性を、改めて実感しました。理論的に考えることの大切さを実体験として再認識できました。 SNS戦略はどう考える? 各SNSの特性を踏まえ、効果を最大化するためのアプローチを分析に基づいて決定する必要があると感じました。特にFacebookでは、以下の点がフォロワー以外のユーザーにリーチし、リーチ数やシェア数が向上する要因として考えられます。まず、ユーザーにとって有益で興味深い情報が含まれるコンテンツは、シェアされやすい傾向にあります。次に、画像や動画などの視覚的要素の活用が、ユーザーの関心を引き、シェア拡大につながります。また、ユーザーがオンラインで活発な時間帯に投稿することで、全体のリーチとエンゲージメントが向上することが期待できます。さらに、質問や呼びかけを通じたユーザーエンゲージメントの促進、適切なハッシュタグの使用、そして他のページやインフルエンサーとの連携も、投稿の拡散に寄与する重要な要素です。 インスタ投稿の極意は? 一方、Instagramでのリーチ数やシェア数を高めるためには、いくつかの施策が効果的です。投稿頻度を1日1回以上にすることで、多くのユーザーに接触する機会が増加します。また、ターゲットユーザーがアクティブな時間帯を分析し、最適なタイミングで投稿することがリーチ向上に大きく寄与します。さらに、再投稿を避け、独自のオリジナルコンテンツを作成することは、Instagramのアルゴリズム上も優遇されるため有効です。関連性の高いハッシュタグの活用や、コメントなどを通じたユーザーとの積極的なコミュニケーション、そして「いいね+フォロー」などの参加しやすい条件でのキャンペーン投稿も、投稿の発見性やエンゲージメントを高める効果が期待できます。これらの施策により、投稿が「発見」タブに掲載される可能性も高まります。 データで最適化する? また、2月のSNS投稿の各コンテンツ別の結果をまとめ、そのデータに基づいて仮説を導き出す時間を確保する必要があります。CFMの効果最大化には、シェアされることと夕方以降の投稿が鍵であると考えています。アクティブな時間帯に投稿しているものの、Instagramでの投稿内容や曜日についても、仮説を立て、会議で検討するべき点が多いと感じました。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーに必要な3つの要素を探る

リーダーの要素は何か? 「リーダーとは、~~な人である」の「~~」に当てはまる言葉を考え出すことで、自分がリーダーに必要だと考える要素を言語化することができました。「なぜこの人はリーダーシップがあるのか?」を考察する際、行動、能力、意識の3つの要素に分類してみると、この3つが揃うことが重要であると説明できると感じました。これらの要素は互いに影響し合うものだと考えます。 行動と意識はどう連動する? 行動については、ビジョンを示したり、夢を語ったりするような行動は、「こうしたい」という自分の欲求から引き起こされ、この欲求は「意識」と強く関係しています。能力とは、たとえば決断したり、説得したりするスキルのことですが、これは後から磨くことが可能です。行動を続けることで学び、さらに能力を向上させることができます。さらに、意識が強ければスキルを磨くモチベーションも続き、能力は行動や意識と密接に連動しています。意識とは、たとえば熱心さや明るさ、オープンであること、度量の広さといった特徴を持っていますが、これらは生まれつきのものと思われがちです。しかし、日々の行動を通じて習慣化されるため、行動と強く連動します。 リーダーシップをどう身に付ける? 「どうしたらリーダーシップを身につけられるか?」という相談に対しては、行動、能力、意識の3つの要素を使って解説し、現時点での自分の強みやこれから磨きたい部分を中心に対話ができると思います。また、新しいメンバーとのコミュニケーションにおいては、仕事の目的と完成形を確認する(What)、期限を確認する(When)、方法を考える(How)、そして最適な進め方を対話で引き出すことが重要です。さらにこの仕事を通じて得られる良いことに関しても一緒に話し合い、本人の「Want」を引き出すことが重要ではないかと感じました。このような対話を通じて深い理解と納得を得ることが重要です。 対話の重要性とは? 「頭合わせ」を怠らず、対話によって丁寧に進めることが、効果的なリーダーシップにつながると考えます。そのためには、1対1の対話を必要に応じて定期的に設定することも意識しています。特に新メンバーには、考えを共有し、どこまで理解しているかを確認することが求められます。このようにメンバーに自身の考えを表明し、行動を通じて示していくことが、自らのリーダーシップの深化につながると考えています。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

クリティカルシンキング入門

ナノ単科が開く挑戦の扉

どのグラフを選ぶ? データを視覚化して情報を分かりやすく伝える際は、テーマに合ったグラフを選ぶことが大切です。時系列の変化を示す場合は左から古い順に配置された縦棒グラフ、要素ごとの伸びや量を表す際には横棒グラフ、割合を示す場合は円グラフや帯グラフ、変遷を伝えるときは折れ線グラフを使うと効果的です。間違ったグラフを選んでしまうと、本来伝えたいメッセージが正しく伝わらなくなるため注意が必要です。 フォントで印象作る? また、文字のフォント、大きさ、色などは、受け手に与える印象を大きく左右します。強調したいメッセージに対しては、これらの要素をうまく活用することで、より伝わりやすくなります。反対に、注意事項を伝えたいにもかかわらず、小さいフォントや細字、目立たない色使いをすると、伝えたい内容がうまく伝わらない可能性があります。 視覚配置はどう? スライドを作成する際は、リードメッセージと、それに続くグラフや表、アイコンなどのビジュアル要素が一体となっているか確認することが重要です。リード文とグラフの配置にずれがなく、アイコンや色彩が伝えたいポイントを適切に表現しているか、しっかりチェックしましょう。 情報整理はできる? クライアントに提示するドキュメンテーションの場合、リード文やボディに情報が散乱しすぎたり、何を伝えたいのかが不明瞭になったりしないよう注意が必要です。社内資料やクライアントから受領した資料を使う際には、メッセージとグラフ、表にズレや矛盾点がないか、十分に確認することが求められます。よく確認し、擦り合わせを怠らないことで、論点がブレたり、ゴールが不明確になったりする事態を防げます。 図表の確認は? さらに、グラフや表にする際は、タイトルや単位など必要な情報が欠けていないか、常に注意深くチェックしてください。伝えたいことや論点を整理し、日本語の文章に落とし込むことで、より分かりやすく伝えることが可能になります。色やフォント、図表の配置が相手の理解を助ける順序になっているか、また、自分が話しやすい構成になっているかを意識しましょう。 資料の見直しは? 最後に、日々目にする膨大な資料やデータを読む際、矛盾点や分かりにくい点が見つかった場合は、作成者に確認することを心がけ、情報のずれが生じないよう対策を講じることが大切です。

データ・アナリティクス入門

キャンペーン成功の秘密、数字から

施策の視点は何? まず、Product、Price、Place、Promotionの4つの視点で施策を考察することで、学生における時間帯、価格、訴求チャネルのミスマッチという論点が整理しやすくなります。この手法は、自部門での施策レビューでも有効に活用されています。 広告評価はどう? 次に、広告メディアの選定では、「費用 ÷ 表示回数」という単純な指標を用いて、CPM換算で最適な媒体を選びました。これにより、感覚ではなくデータに基づいて判断する重要性を再確認することができました。 離脱原因は何? また、SNS広告管理画面の年齢属性データやUTM付きの流入計測、学内アンケートなど複数の手法を組み合わせることで、認知から興味、そして来校までの各段階で、どのタイミングで学生が離脱しているのかを具体的に特定できる仕組みが整えられています。 各要素のギャップは? 新規キャンペーンを企画する際には、Product(訴求内容)、Price(学割の有無)、Place(曜日・時間帯)、Promotion(SNSや学内媒体)の4象限マトリクスを必ず作成し、意思決定会議で各要素間のギャップを洗い出すルーチンを実施しています。 ファネルの進捗は? さらに、UTMパラメータを用いて大学生セグメントの流入を追跡し、表示、クリック、資料請求、来校の各ファネル段階での歩留まりを計測しています。歩留まりが低い段階に絞ってクリエイティブのABテストを回すことで、改善に必要なリソースを効率的に投入しています。 損益突破の条件は? また、価格施策においては、固定費と変動費の合計を目標生徒数で割るという式を参考に、学割導入によって必要な生徒数がどれだけ増加すれば損益分岐点を超えるかをシミュレーションしました。テスト導入後は、割引適用者のライフタイムバリュー(LTV)を計測し、キャンペーンの継続を判断しています。 スケジュールは如何? 施策の実施スケジュールとしては、初月にKPI分布の可視化テンプレート構築、2月目に要因分解ダッシュボードとアラート実装、3月目に大学生向けSNS広告のABテスト、4月目に学割と夜間枠の検証、5月目に成果共有会を開催し、6月目に効果を総括して次期OKRを設定するという計画です。これら全てを半年以内で実施する予定です。

クリティカルシンキング入門

相手に伝わる視覚化の極意

伝えたいことは? 今回のテーマは「相手の理解を促進させる視覚化」でしたが、まず大切なのは、相手に何を伝えたいのかを明確に決めることだと感じました。視覚化する上で使える手法には、グラフや文字、スライドなどがありますが、できるだけシンプルにしながらも最大限のメッセージを伝える工夫が必要だと思いました。具体的な学びは以下の通りです。 グラフはどう使う? まず、グラフについてです。時系列データには折れ線グラフや縦棒グラフ、データ量の比較には横棒グラフなど、それぞれの特徴を活用することが重要です。 文字はどう工夫? 次に、文字についてです。自分はカラフルになりがちですが、強調したい文言が過剰にならないよう注意したいです。また、使う色の中身も意識しながら差別化を図ることが大切です。 スライドで誘導は? 最後に、スライドについてです。メッセージの順番は左から右、上から下に配置し、強調したい箇所には矢印を入れて視点を誘導する工夫が効果的です。 学びはどこに? 学んだことは、主に次の2つの場面で活用できると思います。 研修資料の工夫は? まず、社内研修設計におけるスライド作成です。現在、マネージャー候補向けの研修設計を考えており、スライドを作成する必要があります。研修の難易度が上がり多くの資料を収集する分、スライドはできるだけシンプルにする工夫をしたいと考えています。 提案資料はどうする? 次に、経営陣に提案する人事資料作成です。現在、週に1~2回、経営陣に人材戦略に関する提案をしています。その際に資料についていくつか質問を受けることがあるので、資料を一目で理解できるよう改善していきたいと思います。 行動計画は何だろう? これらを活用するための行動計画は以下の通りです。 研修計画のポイント? 社内研修設計におけるスライド作成では、情報の順番とメッセージの順番を一致させ、グラフを取り入れる際にはできるだけ一つにまとめ、フォントのカラーを意識的に差別化することを考えています。 資料改善の注意点は? 経営陣に提案する人事資料作成では、基本的なことですが、グラフにタイトルを必ずつけ、適切なグラフかどうかを常に確認し、データが時系列なのか、要素なのか、変化を表現したいのかを考慮することが重要です。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

「表 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right