クリティカルシンキング入門

数字が切り拓く成長の鍵

数字の意義は何? 数字にただの数値以上の意味を持たせるための第一歩として、数字を分解して理解する方法を学びました。最初に全体像を捉え、その後に複数の切り口で分解することで、数字の意義や解像度を高めることができるという点がとても印象的でした。 実践で何を感じた? 実際に手を動かして作業を進める中で、たとえ重要な意味が見いだせなかった場合でも、「意味が見いだせなかった」という結果自体が大切な情報となることに気づきました。こうしたプロセスを通じて、思考の過程を明確にすることの意義が強調されていました。 フレームワークはどう? また、MECE(もれなくダブりなく)のフレームワークが、層別分解(足し算の考え方)、変数分解(掛け算の考え方)、フロー分解という3つの視点で数字を整理する際に非常に参考になると感じました。このフレームワークを実践することで、より明確に数字の背後にある意味を読み解くことができました。 業務での成果は? 業務面では、事業目標達成に向けたKPI設計やPDCAサイクルのチェックにおいて、数字の分解が役立っています。日々の進捗確認やボトルネックの特定にこの手法を活用することで、マネージャーとしての視座を高め、部下に新たな気づきを提供する場面が増えました。 顧客の課題は? さらに、顧客のニーズや課題の解像度を上げる際にも、数字や状況を複数の切り口で分解して考えることで、問題の原因や改善策を明確にすることができます。例えば、直近の目標に対してKPIがもれなくダブりなく設定されているかのチェックや、カスタマーサクセスプランの再設計、個人目標の複数の切り口でのアクションプランの検討、そして部下のレビュー時に異なる視点を提供することなど、具体的な取り組みが挙げられます。

クリティカルシンキング入門

言葉が映す未来への一歩

ライブ授業は何を感じた? Week01のライブ授業の内容は、すぐには思い出せませんでした。人は忘れる生き物ですから、学んだ内容は定期的に見返すように心がけています。 言語化の効果はどう? この6週間で、言語化の難しさと、それを乗り越えたときに得られる効果に気づくことができました。言語化することで思考が見える化され、自分の理解度がはっきりするほか、考え方のBeforeとAfterが分かり、伝える相手への意識も高まります。こうした効果を実感できたため、今後も継続して取り組んでいきたいと考えています。 継続性の意味は? なお、こういったスキルは筋トレやダイエットと同じく、すぐに成果が出るものではなく、継続性が求められます。日々の業務においても、アンケート分析や会議での方策検討の際、全体を俯瞰して思い込みや決めつけを排除し、具体化と抽象化を意識することは重要です。問いを設定し、仮説を立てることで、効率的な分析を行うようにしています。 分かりやすさの秘訣は? また、メールや資料作成の際には、相手に伝えたいことや必要な情報をシンプルかつ的確に表現する工夫を重ねています。メッセージの言い回しや、表・グラフの見せ方にも意識を向け、誰にとっても分かりやすいものを作ることを心がけています。 振り返りで気づいた? 実践の場でこの学びが活かせるよう、定期的に振り返りタイムを設け、以下のスキル向上を目指しています。まず、日々の学びや気づきを具体的な教訓に変えることで、抽象化力とMECEな視点を養います。次に、思考や感情の言語化を通じて、整理された考えを構築すること。そして、継続的な振り返りにより自身の変化を確認し、不足している視点やスキルの改善に努めることで、学習習慣の定着を図っています。

戦略思考入門

ビジネスを制するメカニズムの極意

今週は何を学んだ? 今週の学びについて、以下のように感じました。 ビジネスはゲームか? まず、資本主義社会におけるビジネスは一種の「ゲーム」であり、そこで戦うためには「ルール」である「メカニズム」を学ぶことが重要です。どんな戦略も基本的な原理原則から外れていては意味がないため、このメカニズムを理解することが大切です。例えば、星野リゾートの星野社長が教科書通りの経営を重視されていることにその点が表れています。 変化に対応するには? 次に、時代やビジネス環境の変化によりメカニズムも変わるため、これに対応できる姿勢が求められます。「守」「破」「離」という取り組み姿勢やマインドセットが重要であり、自分で手を動かして試すこと、自ら調べ分析することも必要です。データや街を歩いて集めた情報を把握し、時代や環境変化を考慮し、指数関数的な急激な変化に対応することが競争の基盤となります。 基本をどう生かす? また、過去の知識を有効に活用することが重要です。業務に取り組む際、小難しい手法に飛びつくのではなく、まずは基本を大切にし、先人の知恵に基づいて基本を理解してから行動すべきです。 スピード重視の理由は? スピードを意識することも大切です。「スピードこそが競争のベースになる」と学びました。「スピード感」を持つことが業務改善に役立ちますが、その速度が何のために必要なのかという本質を見失わず、変化に対応しPDCAを回すために用いるべきです。 実践で何を得る? 最後に、自分で手を動かし経験を積むこと、規模の経済性と習熟効果の観点で業務を分析することが今回学んだ重要なポイントです。これらのメカニズムをしっかり理解し、戦略を立てることが求められると思います。

リーダーシップ・キャリアビジョン入門

リーダーシップは誰にでもできる挑戦

リーダーシップを誰でも発揮できる? リーダーシップは特別な能力ではなく、地位や役職に関係なく誰でも発揮できるものです。リーダーシップというと組織のトップや一番優れた人を思い浮かべるかもしれませんが、必ずしもそうではありません。 日頃の積み重ねが重要? リーダーシップを発揮するためには、日頃から「当たり前のこと」をきちんと積み重ねていくことが重要です。例えば、業務を依頼する際には、具体的に何をどのくらい、いつまでにやるのかを明確に伝え、共通の理解を得ることが大切です。また、その仕事の背景や目的を説明し、全体像を伝えることによって、メンバーが仕事の意味を理解しやすくします。さらに、メンバーの経験や能力を確認し、それに応じたフォロー体制を整えることで、サポートしやすい環境を作りましょう。 目指すリーダー像とは? リーダーとして目指す姿をイメージし、日々の行動に落とし込むことも重要です。リーダーシップの要素は行動、能力、意識に分けられます。リーダーは目に見える行動で評価され、行動は能力と意識の掛け算で成り立つため、それぞれを高める努力が求められます。業務指示においては、丁寧な対応を心がけ、相手任せにせず、相手のモチベーション向上に努めます。面談やミーティングの場でも、相手に伝える力、引き出す力、動かす力が重要です。 人材育成におけるリーダーシップは? また、リーダーシップは人材育成の場面でも発揮されます。メンバーへの働きかけは立場に関係なく「それ、いいね」「やったね」「ありがとう」といった声掛けを心がけ、忙しさを理由にしないよう努めましょう。相談しやすい環境を整えるためには、笑顔での対応や声をかけられた際に手を止め相手に向き合う姿勢が大切です。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

リーダーシップ・キャリアビジョン入門

自分に余裕、対話で花咲く

エンパワメントの真意は? エンパワメントのコツについて学びました。まず、自分自身が余裕を持って取り組むことと、相手をよく理解することが重要であると感じました。ただし、すべての仕事にエンパワメントが通用するわけではなく、手に余る仕事や不確実性が高い業務、そして一度の失敗が許されない仕事には注意が必要です。 目標設定の工夫は? また、目標設定の場面では、相手に自ら考えさせ、その意見を引き出す方法が大切だと学びました。その際、相手が「分からなくて」やる気がないのか、「できなくて」やる気がないのか、あるいは最初から「やりたくない」のかを見極めることがポイントです。もし相手が困惑して「やりたくない」と感じている場合は、やる気が湧くような伝え方を工夫し、意味を分かりやすく伝える必要があります。 余裕の大切さは? 私が一番心に響いたのは、「自分自身に余裕をもって」という考えです。余裕がある状態では、相手の話をゆっくりと聞くことができ、たとえピント外れの回答であっても受け入れて、適切にアドバイスや補正を行えると感じました。一方で、余裕がない場合には感情的になりやすいため、対話に臨む前に自分自身の状態を見極めることが大事だと思いました。 目標と組織はどう連携? 今後、目標設定の際には、相手の話をよりよく聞くように努めます。そして、自分で判断するのではなく、相手に「分からないのか、できないのか、やる気がないのか」を考えさせるように意識します。さらに、相手の目標と組織の目標を結びつけ、広い視野でやる気を促すために、6W1Hを意識した定量化ができる目標設定を行い、フォローアップの頻度も増やしながら、寄り添う姿勢で接していきたいと思います。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

戦略思考入門

MBAで学んだ経済性の裏側を探る旅

規模の経済性とは? 企業活動における「規模の経済性」について、多く仕入れることで単価は下がるが、これが必ずしも適切な解決策とはならないことを理解しました。生産数が増えることで固定費の比率は下がりますが、これは一定したリズムで生産できる場合に限った理論です。実際の企業活動では月ごとにバラツキが生じるため、自社の商品や生産体制を十分に把握した上で考慮する必要があります。特に固定費の利用法については、旧部署から人件費が先行するため、パラダイムシフトが必要だと感じました。 範囲の経済性は? さらに、「範囲の経済性」に関しては、シナジーという言葉で理解が進みました。動画で説明されていた多角化における固定費が増加するケースについて、似たような行動をしているので注意が必要です。社内の複数部署から業務を引き受けているため、業務に習熟するまでの期間が必要であり、これも範囲の経済性に関連すると感じています。 ネットワークも狙える? ネットワークの経済性を大規模なものではなく、ニッチなもので実現させることを目指しています。特に、今後後発でBPO事業に参入する予定であり、独自性の追求に努力を続けたいと思います。個人的には、現状では取り組んでいない領域でのチャレンジを実現するために動き出そうと考えています。 ビジネス法則を見直す? 最後に、ビジネスの法則についての学びを深める必要性を感じています。グループワークでも同様に感じたことですが、用語の意味を調べる機会が多く、先人の知識を十分に活用できていないと反省しています。今後は、MBA用語集を活用し、最低限知っておくべきことを優先的に習得していきたいと考えています。

「理解 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right