データ・アナリティクス入門

小さな比較が大きな決断へ

分析の目的は何? 分析は、対象の比較を通して最終的な意思決定に役立てるためのプロセスです。まず、分析の目的をはっきりと定めることが大切です。その際、必要な要素の整理を行い、どのような切り口で分析を進めるかを考えます。 比較とグラフはどう? 具体的には、各要素を同じ尺度で比較できるよう配慮しながら、縦棒グラフや横棒グラフの使い分けに注意を払い、差異を視覚的に把握しやすい構成を目指します。数値データだけでなく、感覚的なスコアも、別の切り口を用いることで定量的に表現できる点が重要です。 柔軟な検討は必要? また、データ分析の依頼を受けた際は、まず目的に関する詳細なヒアリングを行い、分析に必要な各要素の分解や整理を丁寧に実施します。目の前のデータに固執することなく、柔軟な視点から検討することが求められます。 結果のまとめは? 最終的な分析結果のまとめにおいては、伝えたいメッセージに最も適したグラフやダッシュボードを選択することが鍵となります。こうした取り組みが、分析時に生じる躓きや失敗を解決するためのディスカッションに繋がっていくでしょう。

データ・アナリティクス入門

平均値の裏に隠れた真実

計算方法で何が変わる? 動画を通じて、平均値と言っても採用する計算方法によって分析結果が大きく異なることを実感しました。これまで数値のばらつきや外れ値についてあまり意識していなかった自分にとって、正確な分析を行うためにはこれらの点をしっかり捉える必要があると感じました。平均、加重平均、中央値の使い分けについては理解していたものの、幾何平均や標準偏差という手法は新たな気づきとなりました。 例外ケースはどう捉える? また、契約顧客に関して解約率やアップセル率を分析する際、まれに契約金額が大きく、どうしようもない理由で解約となる場合や、一時的にアップセルが成立する場合があります。そのような際には、これらのケースを外れ値(ばらつき)として扱うことにより、より現実に即した数値で分析できると感じました。 手法の選び方はどう? 今後、定量的なデータ分析を行う際には今回の学びを活かし、初めは単純平均や加重平均など、さまざまな手法で計算結果を出してみることで、それぞれの数値の違いを実感しながら、より精度の高い分析を心がけていきたいと思います。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

クリティカルシンキング入門

データ分析の深さに触れる喜び

データ分析の楽しさとは? データの分析や加工を実際に自分で行えたことが非常に楽しかったです。Excelを使って学び直す経験も新鮮でした。データを複数の側面から切り分けることは久しぶりの学びでもありましたが、時間が限られているときにそれを実践するのは少し難しいと感じました。 数値を分解する面白さとは? 数値を扱う重要性や面白さを日常業務で感じることは年に数回ありますが、数値を分解していくと、表面では見えてこなかった関連性や有意差が明らかになるため、とても興味深いです。さまざまな切り口で分析することもありますが、アイデアが浮かぶときと浮かばないときがあるように感じます。 グラフ活用の重要性は? さらに、統計解析ソフトなどを利用すると、より面白い分析ができると思います。また、多様なグラフを作成することで、説得力のある説明が可能となると感じます。わかりやすく説明するためには、表よりもグラフの活用が重要だと思います。このような多様なグラフや可視化に関する技術も、データ分析とはまた異なる視点で学んでいくべきことだと思います。

アカウンティング入門

損益計算書が語る企業の実力

損益計算書の要点は? 損益計算書は、売上から費用を差し引いた利益を明らかにする、いわば会社の儲けを示す成績表です。ここでの利益は5種類に分類されます。 資料の分析はどう? この資料を読み解く際は、過去の実績や同業他社、あるいは目標数値と比較することで、どこが優れているか、または改善が必要かを見極めることが大切です。事前にその事業体がどのように儲けを生み出し、どのような価値を提供しているのかを想定しながら、各項目をチェックしていくと、守るべき部分と改善すべき部分が明確になります。具体的には、売上の増加を目指すのか、経費の削減に注力するのかという観点で判断します。 戦略の進展は確認? 例えば、まず自グループの関連会社の事業戦略が、ここ数年にわたり計画通りに進展しているかを確認することが求められます。次に、過去の数値や他社、目標値と比較することで強みや弱みを把握し、今後の人事戦略に活かすことが重要です。さらに、当社や子会社の前年度および一昨年度の数字を詳しく分析することで、企業全体の状況を正しく読み解くことができます。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

データ・アナリティクス入門

予測とギャップで深まる学び

予測とのギャップは何故? ミュージックスクールの実践演習では、加工後のデータを読み解き、解釈する際に難しさを感じました。まず、読み解く前に予測を立て、その予測とのギャップに注目することで、分析をより深堀りできることを学びました。また、演習で既存の年齢分布図を見て、年齢の集約単位の設定が重要であると気づきました。大まかすぎると差異が見えにくく、細かすぎると傾向を把握しにくいということを実感し、複数のパターンを試す経験が必要だと感じています。 売場配置の効果は? 担当部門の売上分析においては、予測を取り入れ、実際の結果とのギャップに基づいて分析を深める計画です。また、家庭用食品の営業担当として、限られた売場スペースに対して各商品の配置を最適化することが重要な課題であると認識しています。加重平均を用いて商品ごとの数値を見ることで、売場のスペース効率を評価し、最適なゾーニングを提案することで業績向上に寄与したいと考えています。データ加工時の適切な集約単位の選定についても、さらなる実践の中でスキルを高めていく所存です。

データ・アナリティクス入門

データが紡ぐ学びの物語

データはどのように? データは、数字、視覚、そして数式という三つの観点から捉えることができます。まずは平均値を確認し、その値を基に仮説を立てます。その上で、実際のデータのばらつきを評価し、平均値だけでは把握しきれない場合には標準偏差を活用します。標準偏差が小さいとデータのばらつきは少なく、大きい場合はばらつきが大きいことを示しています。 視覚情報は活かせる? また、データの種類に応じて適切なグラフを選び、視覚的に理解しやすいようにすることが重要です。与えられたデータやそこから計算された数値だけでは十分な情報を得られないこともあるため、データを客観的に評価し、集約しすぎていないかどうかやばらつきの状況を分解して考慮する必要があると感じました。 偏りをどう防ぐ? さらに、単に平均値を求めるだけでなく、標準偏差や中央値などの他の指標も用いることで、、より偏りの少ない分析が可能となります。状況に応じて平均、最大値、最小値以外の指標も活用し、迅速に必要な情報を把握できるようにすることが求められます。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

アカウンティング入門

カフェから学ぶ経営戦略の秘密

カフェ事例から何が学べる? 身近なカフェを例に、ビジネスの本質を学ぶことができました。コンセプト(思い)に基づいた提供価値と、それに見合う対価の関係が数字にどのように反映されるかが、事例を通じて明快に理解できました。特に、高付加価値を追求する一方で、薄利多売の場合にPLのどの項目に差異が生じるか、その理由について具体的なイメージが湧きました。また、利益を出すための施策はコンセプトに基づいたものでなければ、ビジネス全体にリスクを生じさせるという点も印象的でした。 PL比較で何が見える? さらに、自社のPLを他社と比較する際、理念や戦略の違いが如何に数字に反映されるかを考察することが重要だと感じました。どの部分で利益が出ているかや、その大小を確認することで、自社のビジネスがコンセプトに沿って運営されているか、または改善すべき点がどこにあるかを掴むことができました。今後は、数値の推移や変化と施策との結びつきをさらに意識し、3か月先までの売上や費用の見通しといった具体的な活動にも取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

新鮮発見!幾何平均が拓く売上予測の未来

代表値とばらつきをどう見る? 数値分析では、代表値とばらつきを組み合わせたアプローチを学びました。代表値としては、単純平均、加重平均、幾何平均、中央値が挙げられ、それぞれの特性―単純平均は外れ値に弱く、加重平均は比較対象ごとの重みを反映し、幾何平均は成長率の算出に使い、中央値は外れ値の影響を受けにくい―を理解することができました。また、ばらつきについては標準偏差を用いて平均からの離れ具合を把握します。 幾何平均を感じた理由は? 特に、これまで触れる機会のなかった幾何平均の考え方が新鮮で、分析の幅を広げる一助となりました。 売上予測の具体策は? 売上予測に関しては、過去の傾向をもとにばらつきが少ない項目と大きい項目を整理することで、予測に適した部分とそうでない部分とを区別し、ばらつきが大きい部分には詳細な傾向分析を行う手法を検討したいと考えています。また、ばらつきが小さい項目に対しては、実績値を入力することで自動的に予測を算出できる計算式を構築する仕組みの導入も模索する予定です。

「数値 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right