戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

アカウンティング入門

B/Sで読み解く経営のヒント

B/Sは何を示すの? B/Sは、企業の資金調達と資金の使い道が数値として表れるもので、借入金は設備投資や運営資金として活用できるため、必ずしも悪い要素ではありません。借入金の返済額(利子を含む)を踏まえて、キャッシュ創出を意識する材料としても活用できます。また、ビジネスモデルの違いにより、流動資産や固定資産、流動負債や固定負債、そして純資産のバランスが変化することを理解することが大切です。事業活動の様子がB/Sの数値に現れるため、企業活動とB/Sの関連性を整理しながら分析する必要があります。 負債と資産の関係は? また、1年以内に返済が必要な負債に対し、すぐに現金化できる流動資産が十分にあるか、あるいは固定資産と純資産とを比較して経営の安定性を判断することも重要です。こうしたB/Sの各項目の役割や、ビジネスモデルとの関連に気づき、それらを活用する視点は非常に価値があると感じます。さらに、具体的な活用例について詳細に考えることで理解がより深まると思います。 借入金の活用は? さらに一歩踏み込んだ考察としては、具体的な事例を用いて借入金がどのように重要な役割を果たしたか、また、異なるビジネスモデルでB/Sの数値がどのように変動するかを検討することが挙げられます。たとえば、ある企業では、資金繰りが困難な状況において、経営者からの借入金を長期固定の社債に切り替えることで、法人および個人のキャッシュフローの圧迫を解消し、資金繰りの安定化を図ったという事例があります。このケースでは、借入金を活用した結果、B/S上で負債(流動負債と固定負債)および流動資産が増加したと考えられます。 企業の分析はどう? 最後に、様々なビジネスモデルを探求し、B/Sの分析を通して各モデルの特徴を理解することが、今後のお客様への説明や意思決定に大いに役立つと感じています。月次面談や決算報告の際に、各企業の事業活動と連動するB/Sの状態や変化を定量的に伝えられるよう、日々の業務の中で準備や分析の練習を重ねていくことが重要です。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

アカウンティング入門

カフェの魅力と損益計算書の秘密

損益計算書の意味は? 損益計算書は、企業の利益を5種類の利益で把握でき、売上高との比率を前期や業界水準、競合との比較からその企業の立ち位置が相対的に明らかになります。今回、カフェを題材に取った学習を通じて、事業コンセプトが経営の指針に影響を及ぼし、それが損益計算書に現れることを学びました。例えば、贅沢感や特別感を追求する場合、豆の仕入れや人件費などのコストが高くなるため、経営の方向性や費用配分が損益計算書に反映されることが理解できました。 高コストの秘密は? 贅沢感・特別感を例にとると、ある有名なカフェチェーンがイメージしやすいです。このような事業では、使用する材料や店員の質、店舗立地などに大きな投資が求められ、その結果、売上高だけでなく売上原価や販管費も高めになります。一方、日常的な感覚を売りにする事業では、比較的リーズナブルな価格設定で広い所得層を取り込み、大量生産と効率的な経営が重視されるため、宣伝費やプロモーションにも力を入れつつ、費用構造が大きく異なることが考えられます。 数字の変化は何? このように、事業コンセプトによって売上高、売上原価、販管費などの金額には差が生じるものの、原価率や利益率の数値においては大きな違いが見られない可能性もあると考えました。今後、お客様の損益計算書を見る際には、具体的な事業活動(売上の作り方や費用の使い方など)をヒアリングし、イメージと損益計算書との関連性を丁寧に読み解くことが求められます。 現状把握のカギは? 例えば、月次面談の際には、損益計算書の推移をもとにお客様の事業活動とリンクして現状を把握し、その結果がどの勘定項目に反映されているかをご説明するよう努めています。また、試算表を作成する際には事業活動をイメージし、関連する勘定科目を考慮します。もし事業内容が不明瞭な場合は改めてお客様に伺い、完成した損益計算書から売上高比率などを算出し、業界水準や前期、他企業との比較を通じて現状と実態が一致しているかを確認することが大切だと感じました。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

「数値 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right