アカウンティング入門

営業利益と経常利益の新発見

コストと利益の違いは? PLの分析を通じて、企業が提供する価値と、その価値を実現するためにどのようなコストがかかっているのかを把握できることが理解できました。また、これまで以上に営業利益と経常利益の違いを明確に認識することができました。 なぜ経常利益に注目? メーカーで働いている中では、日常的に営業利益に注目していましたが、経常利益についてはあまり意識していなかったため、今回の学びは大きな収穫となりました。経営や投資家の視点から見ると、本業の儲けである営業利益はもちろん重要ですが、企業の存続性や継続性を考えると、経常利益への着目も非常に大切だと感じています。 同業比較の意義は? さらに、同業他社のPLと自社のPLを比較することで、どのような違いがあるのか、また自社事業の改善に繋がるヒントが見つかるのではないかと考えています。自社の課題とされている部分が、同業他社との比較でどのように数値として現れるのかを確認することも、今後の課題解決に役立つと期待しています。場合によっては、課題と思っていた点が業界全体に共通するものだったという可能性もあり、具体的には固定費の分析などを通じてその点を明らかにしていきたいと考えています。

マーケティング入門

商品が売れる鍵は「魅せ方」だった!

顧客心理の理解は重要か? 今週の実践演習を通じて、顧客のニーズが満たされていても、その商品の魅力が伝わらなければ売れないことを学びました。また、新商品を購入する際、顧客が躊躇する心理が働くこともマーケティングにおいて重要な点であり、新たな気づきになりました。このような心理が働く可能性を理解した上で商品の魅力を伝えなければ、優れた商品でも「売れる」ことには繋がりません。 魅せ方をどう工夫する? イノベーションの普及条件のフレームワークを活用し、顧客に伝わる商品の魅せ方を追求する必要があると感じました。まず、自社商品のコンセプトと魅せ方を改めて確認し、その上で包材の側面から新たな価値を付加できないかどうか考えます。また、自分が思っていた商品の魅力と実際の魅せ方が一致しているのかも吟味します。 競合との違いを見極めるには? さらに、売れている商品がどのような魅せ方をしているのか、他社の競合商品と比べてどのように差があるのかを、お店の商品を見ながら比較してみます。新商品が出たときに、それを「買いたいと思うか、買いたくないと思うか、なぜそう思ったのか」について、自分自身の考えを深堀して、その商品魅せ方を検証していきます。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

マーケティング入門

ネーミングが拓く販売の未来

ネーミングの影響は? サービス自体は大きく変わっていないにもかかわらず、ネーミングやターゲットの違いによって売上が大きく左右されることに驚かされました。いかに認知させるかが非常に重要であり、商品の魅せ方や伝わり方がネーミングによって大きく変化すると実感しました。 イメージ戦略の留意点は? また、売り手がイメージする新用品に対して、既存商品の持つイメージに引きずられる点にも注意が必要です。こうしたイメージの違いを考慮することが、販売戦略を考えるうえでキーとなります。 イノベーションの要件は? さらに、イノベーションの普及要件として、比較優位、適合性、分かりやすさ、試用可能性、可視性のフレームワークを意識する点は非常に役立つと感じました。顧客が購入を躊躇する要因をしっかり洞察する習慣は、競合にとらわれすぎず独自のアプローチを模索する際にも重要です。 求人紹介の未来は? また、求人を紹介する際にも、同じフレームワークは効果的です。生成AIを活用して概念を読み込ませ、求人紹介のプロセスやトークスクリプトの改善に取り組むことで、金融業界以外の分野にも応用できる可能性があると考えています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

クリティカルシンキング入門

問いを共有して成果を引き出す秘訣

正しい問いの立て方は? 問題に取り組む際に、初めに正しい問いを立てないと、間違った問いに対する施策では成果が得られません。会議ではその日の問いを皆で共有し、それを常に忘れずに問いに立ち返ることの重要性を痛感しました。組織でこのような徹底をしないと、同床異夢になってしまうことがよく分かりました。例えば、売上をどのように構成要素に分けるかといったトレーニングは非常に勉強になりました。 業績比較で何が見える? 業績推移を2000年と2024年で売上や単価、件数、社員数、求人数、求人決定数、担当者毎のスカウト数や返信率などを比較することで、多くのことが明確になり、予測可能なことが増加すると考えます。こうした分析により、現状の科学的特定が容易になり、自社の業績に外部環境がどのように影響しているかを理解しやすくなります。 会議でどう問いを活かす? 日常のリーダー会でも、優れた問いを皆で共有し、会議が終わるまでその意識を保ち続けることが肝要です。打ち合わせ記録にもアジェンダの他に問いを共有すると効果的です。年末年始には過去5年の業績推移を分析し、何が何と相関があるのかを明らかにすることが可能だと思います。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

「比較 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right