データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

クリティカルシンキング入門

5つの視点で学びを深める週にしてみよう

総復習で得た学びとは? 今週の講座では、これまで学んだ点を総復習する機会がありました。一つの点にばかり気を取られていると、他の学びを活かせないことがあるため、講座全体をしっかりと復習することで理解を深めていきます。 問題解決のための仮説構築 例えば、施策立案前の仮説構築では、イシューを特定し、イシュー中心で施策を進行します。また、施策の効果検証では、解決すべき問いを残して効果検証までやり切り、どんなリテラシーの人にも伝わりやすい見せ方(視覚化)を意識します。上司や同僚、取引先との情報共有や報告の際は、イシューを共有し、関係者間で問題の認識を統一することが重要です。ポイントを理解してもらえるような伝え方を心掛けます。 状況を整理し問いを立てる 「問い」を立てて取り組むことは何事にも重要です。状況を分解・整理して問いを定め、適切な解決策を導き出します。また、問いだけでなくチームメンバーの役割を明確にすることで、どのような視点での協力を期待しているのか理解しやすくなります。 伝えたいことを正確に伝えるには? 自分が伝えたいことが正確に伝わるコミュニケーションを心掛けることも必要です。相手のリテラシーに合わせた言葉選びや、相手が時間をかけずに理解しやすい見せ方(視覚化)を意識した資料作り、相手が何を期待し、何をすれば良いのかがわかりやすいコミュニケーションが求められます。意見を伝えるだけでなく、傾聴力も大切です。 クリティカルシンキングの磨き方 業務の中でクリティカルシンキングの反復トレーニングを行うことも重要です。具体と抽象、主観と客観を行き来しながら物事を捉えるよう努めます。他者の意見を聞いたり、自身の考えをフィードバックしてもらうことで、視点、視野、視座の三つを広げることを意識します。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

リーダーシップ・キャリアビジョン入門

キャリアアンカーの理解で成長する方法

何が大切な価値観? キャリアアンカーとは、仕事を進める上で最も大切で、絶対に犠牲にしたくない価値観のことを指します。これは8つの型があるとされていますが、必ずしもどれか1つに100%当てはまるわけではありません。感覚的に自己診断すると、私は「全般管理コンピタンス」が70%、「純粋な挑戦」が20%、「保障安定」が10%といった具合です。所属する部署のメンバーを思い浮かべると、全員が異なる価値観を持っていると感じます。これにより、役割期待の設定方法や、モチベーションを高めるためのアプローチ、さらにはフォローアップの声のかけ方までもが変化すると思われます。 どう職務を定める? キャリアサバイバルにおいては、職務と役割を戦略的に計画することが求められます。組織として必要な仕事が何か、またその環境の変化を認識し、誰にどの職務を与えるべきかをリーダーとして常に考えなければなりません。さらに、メンバーそれぞれのキャリアアンカーと実際に与えられている職務や役割がどれくらいマッチしているか確認することも重要です。もし仕事がうまく進んでいないメンバーがいた場合、その理由としてキャリアアンカーと仕事の内容が合っていない可能性を考慮するべきです。 部署の配置を工夫する? 自分の部署の業務を単発的に割り振るのではなく、一度全体の仕事を棚卸しし、メンバーの役割を再度見直し、最適な配置となるようにすることが大切です。そのプロセスとして、まずはメンバーのこれまでの言動からキャリアアンカーを想定してみます。次に、アンケートなどでメンバー自身にキャリアアンカーを判定してもらい、自己の想像との違いを認識します。その上で、職務や役割の割振りが適切かどうかを検証し、必要があれば配置替えを検討することが求められるのです。

デザイン思考入門

デザイン思考で見つける「新しい価値」

顧客中心のステップとは? 考え方のステップについて学びました。特に「顧客中心」というアイディアが印象に残っています。 まず、顧客の行動やニーズ、体験価値を表現し、それをデザインとして具体化します。その後、商品化までの過程で何度も試行錯誤を行い、検証と収束を繰り返します。このプロセスには、試作品の作成とその検証が含まれます。 デザイン思考の役割とは? デザイン思考とは、「潜在意識を表面化」させることを指します。万人向けにデザインされたものは衰退する時代になり、適切なターゲットを設定することが重要です。このターゲットを正確に捉えることが求められています。 私の職種である広報として、この考え方は「新しい価値」を見つけるための能力を養う補助となると思いました。顧客に徹底的に寄り添い、デザインに落とし込んで表現する反復行動を通じて、観察眼を鍛え潜在意識やニーズを引き出す力を培えると感じます。 調整力を高めるには? 業務全般においても、特に「調整」に活かせそうです。何が本当のイシューか再考し、適切な課題設定へのステップを導く基礎となります。このエッセンスを活用することで、組織のビジョンや全体のデザインにも役立てる可能性があります。 具体的には、広報のKPI設定について模索しています。この設定が組織のビジョンを最大化するための基盤であり、将来的には次年度の設定にもこの考え方を取り入れられるか試してみます。 日常にデザイン思考はどう活かせる? 最後に、業務における「顧客」をどこに置くかを整理し、何から考えるべきかを見直す訓練をしています。日常の些細な場面でも活用の余地があるか振り返ること、また、自分の潜在意識から何がデザインできるかを実験し、他者理解の一助となるよう努めています。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

クリティカルシンキング入門

コツコツ積み上げる問題解決力の活用術

問題解決へのアプローチは? イシューをしっかりと定め、常に確認しながら進めることが重要です。何が一番の問題かを考えることから始め、その問題に対して多角的な視野で切り口を見つけます。その後、数字を出し、それを分解してグラフ化してみると、新しい発見が得られます。この発見をもとに仮説を立て、実行し、フィードバックを受けて改善点を見つけ、問題解決に向かって進む、このプロセスを繰り返すことが大切だと感じました。 例題のおかげで、これまで学んだことのプロセスがより理解しやすくなり、一貫性が生まれました。この知識を活かして、自分で課題を見つけ、解決していきたいと思います。 集客戦略をどう見直す? まず、集客についての考察です。ターゲット設定やお店の方針、SNSでのブランディング、各種SNSの運用などを見直しながら、ターゲット層に響きそうな問題ワードをできるだけ多く出します。そして、それに対する解決案を提示し、SNS運用やメニューの再構築を行います。既存のメニューの予約率を月ごとに把握し、低いメニューに対して改善を図り、予約の多いメニューに抱き合わせメニューを作る施策を取ります。 求人の改善策は有効か? 次に、求人については、SNS広告を発信し、どれくらい見られたのか、効果があったのかを検証します。また、広告や打ち出しに対してのフィードバックをしっかりと収集し、改善に活かします。 業務効率化を進めるには? 業務の効率化については、適切な施術を行う際の作業効率化を図るため、マニュアル化を進めます。商品販売時には、購買意欲を上げるトークやそれを効果的に見せる導線を作り、顧客の興味を引く工夫を取り入れます。 今後もこれらの学びを活かし、自分自身のスキルアップに努めていきたいと思います。

「業務 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right