データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

アカウンティング入門

貸借対照表で読む企業の健康診断

貸借対照表の意義は? 貸借対照表(B/S)は、ある時点における企業の財政状態を示す重要な資料です。貸借対照表は、負債と純資産(集めたお金)の合計と資産(何に使ったか)が常にバランスしているという原理に基づいています。資産と負債は、流動性(現金化のしやすさ)を示す流動と固定に分けられ、純資産の比率からは企業の安定性を把握できます。これにより、企業の健康状態、つまり財政的に健全な状態か否かを判断する手がかりとなります。 数値変動をどう見る? また、過去の数値と比較することで、どの項目が変化しているかを把握し、財政状態の大枠をイメージすることが可能です。損益計算書(PL)を参照すれば、対象期間内の売上や損益の変動の背景と、財政状態の変化との関連を紐づけることができます。さらに、他社との比較を行うことで、目標とすべき数値や特徴を明確にし、企業が掲げるコンセプトや中期戦略との整合性も確認することが重要です。 健康判断の限界は? ただし、売上が順調に伸びている企業と横ばいの企業では、同じ項目であっても借入金の性質や意味合いが大きく異なるため、貸借対照表だけで企業の健康状態を完全に判断することには限界があるといえます。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

アカウンティング入門

利益の理解から始まる新しい挑戦

利益の種類とは何か? 利益に関する理解を深めることができました。具体的には、営業利益、経常利益、当期純利益のそれぞれについて理解し、それぞれの利益が何を示しているのかを把握することが大切です。 - 営業利益は、本業から得られる利益です。 - 経常利益は、通常の事業活動から得られる利益を示します。 - 当期純利益は、特別損失や特別利益、法人税等を踏まえた利益です。 PLとビジネスモデルの関係 さらに、ビジネスモデルや提供価値とPL(損益計算書)を関連付けて考えることの重要性を学びました。自分が予想した通りにPLに現れているか、そうでない場合はその原因を考えることが必要だと感じました。 自社PLの再分析に挑む まずは、自社のPLを再度分析したいと思います。これまで、自社のPLを詳しく理解したことがなく、なぜそのようなPLになっているのか深く考えたことがありませんでした。これからは、より深く考えるように努力します。 他社との分析共有は可能か? また、自分が分析した内容を共有し、それを元に他社と議論したいと考えています。自社だけでなく、他社のPLを分析することにも挑戦してみたいと思います。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

アカウンティング入門

マッチョ経営で築く信用の土台

資産とその仕組みって? 資産は、負債と純資産の合計で成り立ちます。流動資産は1年以内に現金化や支払いが可能なものを指し、固定資産は長期にわたる資産を示します。また、損益計算書の当期純利益は純資産の利益剰余金として毎年蓄積されます。純資産は、人間でいう骨格や筋肉に例えられ、純資産の割合が高い会社は「筋肉質」な会社、すなわち健康な会社と捉えられます。 起業後の資産計画は? 起業後のビジネスにおいて、どれくらいの資産を保持できるかはこれまであまり意識していなかったため、今後しっかりと検討していきたいと考えています。現段階では、早期にベンチャーキャピタルからの資金調達を前提としていないものの、できる限り健全な会社体質、つまりマッチョな会社を目指す方針です。必要に応じて借入れも活用し、手元資金を厚めに確保することで、安定した経営を実現したいと思います。 信用向上はどうする? 一方で、返済能力に見合った借入れを行い、着実な返済実績を積むことで信用度を向上させることが重要です。このような信用力の向上が、その後の資金調達をより円滑に進めるために役立つと考えています。

アカウンティング入門

数字が語る経営の物語

利益はどこから生まれる? 企業が生み出す利益は、独自のビジネスアイデアを実行した結果として、損益計算書(PL)に表れていると感じます。そのため、企業や事業内容を理解する際には、各部門の活動や目的が実際に意味を持ち、適切に運営されているかを慎重に見極めることが必要です。最終的には、利益創出の根幹にあるアイデアを正しく把握することが、企業業績を評価する上で重要となります。 アイデアはどう差別化? 具体的には、まず自社がどのような事業を主要な生業としており、どのようなアイデアで他社との差別化を図ろうとしているのかを理解することが大切です。この際、自身の業務に影響を及ぼす費用がどこまで適正に管理されているのかも判断する必要があります。 付加価値はどのように? また、製品に付加価値を付けるための領域を検討する際は、自分の担当する業務が生み出す環境価値にどれだけコストを投じられるかをイメージすることが求められます。そして、損益計算書の中から製品の付加価値が反映されている部分を割り出し、他社のPLと対比することで、より客観的な視点で自社の立ち位置を考察することが可能です。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

アカウンティング入門

数字が映すビジョンの真実

全体の学びはどう感じる? 全体を振り返ることにより、この6週間の学習内容を再確認でき、定着がより一層進んだと感じています。学びの中で、財務数値は単なる数字そのものではなく、その背景や因果関係を読み取ることが重要であると気付かされました。 財務分析の見え方は? また、損益計算書と貸借対照表を関連付けて分析することで、企業の全体像を立体的に把握できることも大いに実感しました。企業のビジョンは、財務諸表に反映されるはずですが、もしそれらが一致していない場合、目標と行動にズレが生じている可能性があるため、ビジョン達成のための有効な投資について考える必要があることも理解しました。 戦略投資の具体策は? この学びを実践するための具体的な取り組みとして、まず自社の本社や販社の財務状況を月次で分析し、特殊な変化点がないかを注視することが重要です。次に、企業理念に基づいた貸借対照表の分析を通じ、次の成長に向けた戦略的な投資のあり方を検討します。そして、競合他社や異業種の損益計算書、貸借対照表などを研究することで、知見を広げ、さらなる戦略構築に役立てることが求められます。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。
AIコーチング導線バナー

「計算 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right