クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

経験と知識を活かす!成長のヒント

規模の経済性はどう? 規模の経済性に関しては、以前の部署では固定費としての人件費に特に注意を払っていたものの、現在の部署ではその意識が薄くなっていることに気づきました。これは、企業運営において重要な指標であり、一層の意識改革が必要だと感じています。 範囲の経済性を疑う? また、範囲の経済性についても考察しました。他の事業に利用できるように見えても、安易な多角化には注意が必要です。例えば、ペンタゴン経営を試みたものの失敗した鐘紡の例は重要な教訓です。 総合演習から何を学ぶ? 総合演習を通じて、特に厳しい状況においては他社の成功例や新しいツールに飛びつきがちになることを実感しました。自分の力だけではどうにもできない人口動向や嗜好を考慮した上で、自社の強み分析や経常利益計算を進めることの重要性を改めて認識しました。 部署間の役割は? 現在の部署は事業部制であり、規模の経済性や範囲の経済性を活用する可能性があります。そのためには、自分の部署だけでなく、他の部署の業務を理解する必要があります。 結果をどう捉える? 売り上げに直結していない部署であるため、新しいアイデアやツールを積極的に取り入れる風潮があります。しかし、結果を十分に振り返る機会が少ないため、取り入れる意義や将来性を精査した上で決断することが必要だと学びました。 知識共有の重要性は? また、経験や知識を社内で共有し、学べる環境の整備も考えています。今年の9月には部署を横断してワークショップを開催しましたが、それが単発で終わることなく、継続できる仕組みを作りたいと考えています。 新挑戦の議論は? 新しいことにチャレンジする際にはよく時間的制約がありますが、事前にメリットやデメリットをしっかり議論してから取り組むことが大切です。

アカウンティング入門

原点回帰!価値提供の軌跡

価値と対価の関係は何? ビジネスの基本は、価値を届け対価を得ることにあります。損益計算書は、提供した価値に対して得た売上と、価値を届けるためにかけた費用のバランスを把握するためのツールと言えるでしょう。 赤字の原因は何? もし赤字となる場合は、費用対効果のバランスが崩れていることを示しています。たとえ儲けが大きいことが望ましくても、コアバリューを損なわずに売上と費用のバランスを見直すためには、常に自社が提供したい価値が何であるかを振り返り、その原点に立ち返る必要があります。 提供価値はどう伝わる? 現状の売上の構成や、価値提供のためにかかっている費用を損益計算書をもとに見直すことが求められます。また、コアバリューを顧客体験として届けるためには、単に目標を達成するだけでなく、どのような価値を提供した結果として売上が立ったのか、その達成プロセスそのものが本質であり、事業の成長可能性に大きく影響すると考えます。 価値実現の進捗は? 今期の振り返り面談では、今後やりたい取り組みとしてこの点をお話する予定です。日々の業務では、単にKPIを達成することに注力するのではなく、その達成プロセスを通じて自社のコアバリューが体現されているかどうかに意識を向けます。もし体現が不足している場合は、KPIの設定がビジネスの本質からずれている可能性があるとして、定量目標が達成できなかった背景にある定性的要因をきちんとエスカレーションしなければなりません。 事業発展の鍵は? さらに、決算説明資料をもとに、今後どのように事業を発展させ、スケール化を進めることでコアバリューをより深く広く社会に届けることができるかをイメージし、それを社員登用試験でもお話したいと考えています。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

アカウンティング入門

PLで変わる利益の見方と経営戦略

PL読み方で経営判断に役立てるには? PL(損益計算書)の読み方が変わることで、どの項目が利益を生み出しているのかを正確に把握し、経営判断に役立てられると考えました。例えば、低価格戦略を採用する場合、売上総利益率の管理が重要であり、原価や人件費の削減が利益確保の鍵となります。また、商品の回転率向上や付加価値の高い商品の販売比率を分析して、売上を最大化する施策を考えることができます。PLを利益構造の視点で分析することで、経営戦略の精度を上げ、持続的な成長に結びつけることを学びました。 病院経営で利益を上げるには? 病院経営においても、診療報酬や自費診療の構成を分析し、どの診療科やサービスが利益を生んでいるのかを明確にすることが重要です。例えば、外来、入院、手術、検査の各部門の収益性を分析し、利益率の高い診療を強化する戦略が考えられます。さらに、物品の共同購入、在庫管理の最適化、ICT活用による業務効率化、スタッフの業務フロー改善による労働生産性向上にも役立てたいと思います。 患者の回転率向上に向けた施策は? 病院では「患者の回転率」という視点が特に重要です。例えば、病床回転率を高めるために、退院支援の強化や在宅医療との連携を強めることで入院日数を適正化し、より多くの患者を受け入れることができます。また、外来診療や手術件数を増やすためのスケジューリング最適化も重要です。診療報酬データや患者満足度調査の結果を活用し、どのサービスに改善の余地があるのかを分析することで、経営戦略の精度を高めることが可能です。例えば、患者満足度が低い診療科で業務フローを見直し、患者リピート率を向上させる施策を立てることもできます。このような視点で取り組みたいと考えています。

クリティカルシンキング入門

数字の分析で問題解決!MECEで明快に理解

数字分解で見える問題解決策 目で見た情報をそのまま鵜呑みにするのではなく、内訳の計算やグラフ化などの加工をすることで、その数値を見て問題解決のための分析を行うことが重要です。数字を分解することで、問題の要因や発生箇所を特定できます。この際、「MECE」を意識して分解を行うことで、効果的な分析が可能となります。どこからどこまでが「全体」なのかをしっかり定義し、目的に応じた分け方をすることがこの分析の鍵です。 複数の視点で数字を分析する 数字を分析する際には、一つの切り口だけでなく複数の切り口から見て比べることが大切です。そうすることで、一見正しそうな仮説の間違いに気づいたり、本質的な情報の傾向を掴むことができます。数字を分ける際は、機械的に分けるのではなく、「問題は個々にあるのではないか」と仮説を立て、それを確かめるような切り方を試みることが有効です。 採用戦略の数値で見える傾向 採用戦略を立案する際には、クライアント企業の採用プロセス(求職者への求人リーチ~応募喚起、書類選考通過率、面接合格率、内定後の意思決定率など)ごとに数値を分析します。これにより、どこでスタックしているのかを明確にし、それに応じた打ち手を考案し、実行できます。そして、それが自分で解決できる問題なのか、クライアントに動いてもらうべき問題なのかを切り分け、自身の行動を決定していきます。 戦略改良のための比較分析とは? クライアント企業の求人閲覧者を全体として捉え、どれくらいが応募し、そのうちどれくらいの人数が書類選考を通過したかを明確にしてクライアントに提示します。他社や市況感全体と比較することで、どのような傾向にあるのかを伝え、戦略を練っていくことが重要です。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

アカウンティング入門

伝統×WEB!決算数字で読み解く現実

会社の収益は見えるの? 会社のビジネス内容から、損益計算書や貸借対照表の数値を予測することが可能です。予測と実際の数字との差異を知ることで、その会社のビジネスの特徴、すなわちメリットやデメリットを理解する手がかりになります。 航空事例は何を示す? 今回のケースでは、ある航空会社が固定資産として旅客機を購入する際、何年で償却するかや、稼働率、メンテナンス費用など、どの項目を検討してどの程度の収益が見込まれているのかに興味を持ちました。自分が働くモノづくりの現場でも同様の視点が当てはまると感じています。また、近年増加しているWeb関連企業とはビジネス体質が異なるため、収益に対する考え方も違うと考えます。この点について、グループワークの中で議論してみたいと思います。 自社分析はどう進む? ① 自社のP/LやB/Sシートを確認し、自分なりに分析します。同業他社との比較も行い、どの部分が異なるのか、なぜ違うのかについて考察します。さらに、伝統的な企業と近年の企業の違いを比べ、その知見を自分の業務に活かす方法を模索します。 意見交換で何が得られる? ② 半期や通期の決算書を確認し、自分なりの見解をまとめた上で、グループのメンバーと意見交換を行います。新聞やニュースなどの情報に触れた際、その内容をWebで検索し深掘りすることで、更なる理解を深めます。 他社との違いは? 自社の半期・通期決算発表を受け、会社の現状を自分なりに考えるとともに、他社の情報にも関心を持ち、なぜ他社が強いのか、または厳しい状況にあるのかを考察することが重要です。関連する書籍にも手を伸ばしてみると、より広い視野でビジネスの理解が深まるでしょう。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

「計算 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right