クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

アカウンティング入門

数字で語る共通のストーリー

数字の意味は? アカウンティングとは、単に数字を整理・計算するだけでなく、数字を用いて物事を説明し、意思決定に結びつける行為であると理解しました。数字の整理で終わらず、「なぜこの数字になっているのか」や「次に何をすべきか」を言語化する点が重要であると感じました。 数字は説得の鍵? また、数字は感情や立場から切り離された客観的な共通言語となり得るという点にも大きな学びがありました。「個人的にはこう思う」ではなく、「数字がこう示しているから、この判断を下す」という説明ができることで、普段は言いにくい提案や課題提起も、建設的に伝える武器になると実感しています。 どうやってすり合わせ? 特に、経営層とのコミュニケーションや予算策定の場面でこの考え方を活用していきたいと思います。実務では、より高い利益を追求する経営陣と、現実的な制約の中で目標を引き上げようとする現場との間で認識のズレが生じることがあります。そのような状況においても、感覚や立場の違いに左右されず、数字を共通の言語として利用することで、建設的な話し合いが促進されると感じています。 改善点はどこ? 現場の実情に基づいた積み上げをもとに、トップラインの構造やアップサイド・ダウンサイドの要因を数字に紐づけて整理することで、どこに改善の余地があるのかを明確にしていきたいと考えます。経営層と同じ目線で説明できるようになることで、認識のすり合わせや共通の語彙が進み、より前向きな議論につながると思います。 因数分解はどう使う? また、因数分解を用いて単価や件数を積み上げる重要性を改めて確認しました。一方、将来の見通しを立てる際は、どうしても運や外部環境の影響が大きく、数字だけでは表しきれない部分が存在することにも気付きました。過去の実績や傾向、知見を基に見通しを描くことは可能ですが、環境変化や予想外の要素をどの程度織り込むか、また不確定要素をどのように扱うかは大きな課題と感じています。 不確実性はどうする? このような不確実性の高い状況において、どの部分を数字で示し、どの部分を前提やリスクとして共有するのか、実務の中でどのように工夫されているのか、ぜひ皆さんの意見を伺いたいと思います。

データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

マーケティング入門

市場を乗りこなす戦略のヒント

市場ニーズはどう把握? 世の中ではさまざまな人が多様な課題に直面しているため、自社の製品やサービスがどの市場で求められるかを事前に把握するのは困難だと感じました。ある企業は職業者向けに製品を設計し、細かい要件を把握した上でソリューションを検討、設計を行っています。この過程では、十分な市場調査と検討が行われた結果、問題が生じなかったのではないかと考えます。もし最初から一般消費者向けの販売を目指していたら、そもそも売れなかった可能性があるでしょう。しかし、特定の市場に絞ることで、その市場で必要とされた機能が他の市場でも需要となる場合も考えられます。大事なのは、事前にすべてを完璧に計画するのではなく、状況に応じて随時見直していくことだと感じました。実際、初期段階では市場調査が十分に行われるものの、事業が軌道に乗った後は、売上が落ちた際にのみ見直しがなされる傾向があるように思います。 ブログ運営はどう進化? 今回、自身のブログにこれらの視点を応用しようと試行錯誤しています。あまり砕けた表現や個人的な話題を書くのは好みではなく、ビジネスや科学、歴史、社内に関する知的コンテンツを中心に、また資産運用シミュレーターや割り勘計算などのWebアプリも提供しています。日々、Google Analyticsの結果を確認しながら、幅広いコンテンツの作成に取り組んでいます。これまでの事例を踏まえ、今後も継続的にデータを見直し、予期せぬ顧客層の出現に対応できるよう努めたいと思います。 戦略はどう選ぶ? また、ある企業が元々の市場に特化しすぎた結果、売上が低下したという話を聞いたことがあります。新たな顧客層の開拓に取り組む際、既存市場での実績を維持しながら進めることが求められます。以前、ある大手エンターテインメント企業は、家庭内で使用できる高性能コンピュータを目指し、製品の枠を超えた展開を試みました。一方、別の企業は一貫してゲーム機本来の機能に注力しました。当時の報道では前者が注目されましたが、結果として後者の戦略が成功したと感じられます。このように、どちらのアプローチにも一長一短があり、今後もその是非について議論していく余地があると考えます。

アカウンティング入門

カフェの魅力と損益計算書の秘密

損益計算書の意味は? 損益計算書は、企業の利益を5種類の利益で把握でき、売上高との比率を前期や業界水準、競合との比較からその企業の立ち位置が相対的に明らかになります。今回、カフェを題材に取った学習を通じて、事業コンセプトが経営の指針に影響を及ぼし、それが損益計算書に現れることを学びました。例えば、贅沢感や特別感を追求する場合、豆の仕入れや人件費などのコストが高くなるため、経営の方向性や費用配分が損益計算書に反映されることが理解できました。 高コストの秘密は? 贅沢感・特別感を例にとると、ある有名なカフェチェーンがイメージしやすいです。このような事業では、使用する材料や店員の質、店舗立地などに大きな投資が求められ、その結果、売上高だけでなく売上原価や販管費も高めになります。一方、日常的な感覚を売りにする事業では、比較的リーズナブルな価格設定で広い所得層を取り込み、大量生産と効率的な経営が重視されるため、宣伝費やプロモーションにも力を入れつつ、費用構造が大きく異なることが考えられます。 数字の変化は何? このように、事業コンセプトによって売上高、売上原価、販管費などの金額には差が生じるものの、原価率や利益率の数値においては大きな違いが見られない可能性もあると考えました。今後、お客様の損益計算書を見る際には、具体的な事業活動(売上の作り方や費用の使い方など)をヒアリングし、イメージと損益計算書との関連性を丁寧に読み解くことが求められます。 現状把握のカギは? 例えば、月次面談の際には、損益計算書の推移をもとにお客様の事業活動とリンクして現状を把握し、その結果がどの勘定項目に反映されているかをご説明するよう努めています。また、試算表を作成する際には事業活動をイメージし、関連する勘定科目を考慮します。もし事業内容が不明瞭な場合は改めてお客様に伺い、完成した損益計算書から売上高比率などを算出し、業界水準や前期、他企業との比較を通じて現状と実態が一致しているかを確認することが大切だと感じました。

アカウンティング入門

P/Lに見る価値と現実のバランス

損益計算書の意味は? Week02では、損益計算書(P/L)の構造と意味合いから、企業の儲けの仕組みを読み解く視点を学びました。P/Lは単に収益や費用、利益の関係を示すのではなく、事業活動の結果として、どのように価値を生み出し、どのようなコスト構造を採用しているかが表れていることが理解できました。 カフェ事例に疑問は? 授業内での事例では、異なる提供価値がP/Lにどのように反映されるかが明快に示されました。あるカフェは「非日常の贅沢体験」を提供するため、客単価が高いものの内装や人件費などの費用も大きく、利益が出にくい構造でした。一方、別のカフェは「日常の小さな休息」をコンセプトに、費用を抑えながら安定した需要を捉えるモデルで成り立っていました。 選択の重みを知る? この比較から、P/Lを数字だけでなく、提供価値と費用構造の関係を踏まえて読み解く重要性を再認識しました。利益は単なる数字の結果ではなく、価値創出と費用配分の選択の積み重ねそのものであり、P/Lはその選択の結果を客観的に示すツールであると感じています。 自社評価の視点は? 学習を踏まえ、まず自社の損益計算書を「提供価値との整合性」という視点で評価したいと考えています。自社が市場にどのような価値を提供し、その価値を実現するためにどのような費用構造を採用しているのかを整理することで、収益の源泉や改善の余地を立体的に把握できると考えています。売上や利益の数字だけではなく、事業活動の実態(定性的な面)と財務データ(定量的な面)がどの程度一致しているかを確認し、今後の議論や提案の基盤にしていきたいです。 労組の分析を考える? また、労働組合の収支計算書についても、損益計算書と同様の視点で分析する予定です。組合活動が提供する価値と費用の使い方が適切に結びついているかを検証することで、事業活動とは異なる角度からも、持続可能な運営や会員への価値提供のあり方を考える材料としたいと考えています。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。

アカウンティング入門

学びで極める損益の秘密

利益分析ってどう? 損益計算書は、売上総利益から当期純利益までの5つの利益項目で構成されており、各項目の意味や相互のつながりを理解することが重要です。例えば、経常利益が黒字であっても、特別損失の影響で最終的な当期純利益が赤字になる場合があるため、個々の利益の中身に注目する必要があります。また、売上高については単年度の数字だけでなく、過去の推移と比較することで、その変化の背景や要因を読み解く視点が求められます。各利益の数値は、過去との比較や同業他社との水準比較を行うことで、より多角的な収益性の判断に役立ちます。 価値をどう守る? 儲けを考える際には、やみくもに費用を削減するのではなく、自社が大切にしている価値を見極めることが重要です。実務では、具体的な事例に基づいてPDCAサイクルを回すことで、業務改善に結びつけることができると感じました。今後は、日々の業務においてどの指標に注目すれば改善につながるかをより一層意識していきたいと思います。 利益の段階って? たとえば、利益の各段階、特に営業利益や経常利益に影響を及ぼす業務を把握することで、財務的観点から改善すべき業務の優先順位を判断できます。また、複数月や前年同月との比較を心がけることで、単なる「売上」や「請求件数」の数字だけでなく、その意味や背景を読み取る視点が養われます。 黒字と赤字は何で? さらに、経常利益まで黒字でありながら純利益が赤字となる背景を理解しておくと、上司や関連部署との会話時に説得力が増し、経営層や営業部門との議論の際にも信頼感が向上します。KPIの設定や改善レポート作成の際に、損益計算書のどの段階に関係しているかを意識することで、より成果に直結する指標設計が可能になると感じます。 比較で何が分かる? また、同業他社との比較を通じて自社の利益水準や費用構造の違いを把握することで、業務効率の向上やコスト構造の改善につながるという点も、非常に参考になりました。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。
AIコーチング導線バナー

「計算 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right