データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

クリティカルシンキング入門

見やすさと中身を追求した資料作り術

表現の工夫で印象はどう変わる? 表現の工夫によって、相手に与える印象は大きく変わることを学びました。まずは基本を理解し、様々なグラフのタイプが持つ理由を踏まえた上で応用するかどうかを判断することが重要です。デザインに意識を向けすぎると中身のないデータ資料になってしまうため、本質を理解し、資料をまとめた上で批判的思考と他者目線を意識して取り組みます。 資料作成のポイントとは? これを元に、フォントや色合い、グラフなどが見やすくまとめられた資料を作成することを心がけます。過度に凝るのではなく、必要な内容に集中し、感覚的にわかりやすく、好印象を与える資料作成のヒントを得ることができました。 GPTを活用すべき理由 今後はGPTなどを活用し、グラフやフォントの適切さを確認しながら、より分かりやすい資料を作成していきます。読む相手が辛くならないように配慮し、他者目線を考慮した文章や資料を作成するよう努めます。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

クリティカルシンキング入門

問いと実践が導く解決の道

自ら問いはどう始める? 適切な課題を捉えるには、まず自ら「問い」を立てることが大切だと実感しました。ケーススタディを通じて、数字やデータを分解する手法を学び、分解することで問題点が明確になり、解決策を具体的に構築できることを実感しました。 チームの伝え方はどうする? また、チームの課題を正確に把握するためには、理想とのギャップ、すなわち「問題」を捉え、その内容を的確に相手に伝えることが重要だと感じています。これによって、課題解決へとつながるトレーニングを外部から受けるための土台が築かれると思います。 データ分解で何が見える? さらに、得たデータを細かく分解し、いろいろと試してみることで、新たな「イシュー」を特定できる可能性があると考えています。以前学んだ内容も踏まえ、遠回りでも実際に手を動かして検証することが重要です。具体と抽象を繰り返すことで、より深い理解と着実な進歩を遂げられると感じています。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

クリティカルシンキング入門

切り口を広げる学びの一歩

全体像はどう捉える? データ分析を行う際は、まず全体像を定義し、その上で各要素に分解して考えることが重要です。分解の際には、MECEの状態を目指しながら、what、where、when、howといった切り口や、要素別、ステップ別といった手法を用います。たとえば、年齢という切り口でも、単純に10代、20代と分けるのではなく、18歳まで、22歳まで、23歳以上といった意味を持たせることで、傾向が把握しやすくなります。 異常検知の視点は? 品質管理の現場では、異常を検知した際にその原因を漏れなく洗い出し、特定するためにMECEの考え方が役立ちます。加えて、全社で実施されるエンゲージメントサーベイでは、さまざまな属性を切り口にデータの傾向を掴むことで、改善のための具体的な計画を立てる取り組みを実践しています。 このように、複数の切り口の中から目的に合ったものを選択するには、一定の経験が必要であると実感しました。

データ・アナリティクス入門

仮説思考が導く学びの未来

分析と仮説のバランスは? データ分析の軸として「分析は比較である」だけでなく、仮説思考についても学びました。仮説を立てる際、バイアスによる思考の偏りが影響する可能性があるため、一度他者の意見を聴くなど、客観的な視点を取り入れてバイアスを抑える工夫が重要だと感じました。 データ収集はどうする? データ収集については、オープンデータの活用も有用ですが、世の中に存在しないデータは自分で集めることが大切だと学びました。確かにこの作業は大変ですが、地道な取り組みが結果として大きな意味を持つと実感しました。 報告資料の工夫は? また、月次報告の資料作成に関しては、現在提示している数値とグラフの表現方法を見直す必要性を感じました。具体的には、数値に関しては棒グラフ、比率については円グラフを使用するなど、視覚的な情報の伝え方を多様化し、リソースの過不足など新たな課題が明らかになるかどうかを検討したいと思います。

クリティカルシンキング入門

グラフで見える成長の軌跡

数値グラフは何を示す? 課題の解決策を検討するにあたり、まずは数値データを取り出しグラフ化することで、特徴や傾向を明確にする手法に取り組みました。このプロセスは、どんな場面でも活用できる有効な方法であり、何が問題なのかを整理し、具体的な分析に結びつける役割を果たすと感じています。 数字加工って何が違う? また、仕事においても、ただ発生事象の数字を眺めるのではなく、グラフ化や数字の変換を行うことで、より理解しやすい形に変えることの重要性を再確認しました。これまで、過去の実績に頼って漠然と解決策を導いていた部分があったため、即座に構造化して本質を捉えることが、具体的な根拠に基づいた回答につながると実感しました。 手書きメモは有効? 今後は、日常業務で発生する事象についても、手書きの簡単なメモを用いて構造を整理し、同僚との会話を通じて自分の理解と重要ポイントが合致しているかを確認していこうと思います。

データ・アナリティクス入門

クイズで学ぶ比較と本質

比較で見える本質は? 「データ分析の本質とは何か」という視点から、『比較』の重要性に気付かされました。目的達成のために、どの要素を比較すべきかを考える際、目先のことにとらわれず、本質に目を向ける必要があると実感しました。特にクイズ形式の事例は、この点を分かりやすく示してくれました。 経営とデータ活用は? また、経営においては経験や勘も重要ですが、成長とリスクテイクのバランスをとるためにはデータ分析が欠かせないと感じています。現状、社内に十分なデータ活用の文化が根付いていないため、まずは意思決定に役立つデータを整備し、データ活用への理解を深める啓発活動に注力したいと思います。 信頼をどう築く? さらに、データ分析結果の有効性を社内で理解してもらうためには、まず信頼できるデータを整えることが重要です。必要なデータの所在すら不明な状態からのスタートとなるため、地道な取り組みを積み重ねていく覚悟です。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right