マーケティング入門

現場で気づく隠れた顧客の声

どうしてニーズに注目? 売れる商品を考える上で最も大切なのは、顧客のニーズに着目することであると改めて実感しました。その中でも、顧客自身が気づいていない欲求を捉えることが特に重要であることを学びました。一方で、その気づいていない欲求を見つける難しさも感じ、いろいろな手法を学んだものの、簡単にはいかないと実感しました。 現場観察はどう役立つ? 現在取り組んでいる新製品開発やブランドマネージャーの業務に直結する部分でもあり、現場に出て顧客の行動を直接観察することの重要性を強く感じています。これまで手元のデータとにらめっこしながら顧客のニーズを探してきましたが、今後は現場での観察にも注力していきたいと考えています。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

クリティカルシンキング入門

グラフでひらく、学びの新視点

データ分解の意義は? データを分解することで、新たな視点を得ることの重要性を学びました。特に、グラフを活用することで情報を直感的に整理でき、表だけでは気づきにくい傾向や変化を視覚的に捉えやすくなる点が印象的でした。このため、分析や説明の作業がよりスムーズになると実感しています。 業務応用のポイントは? また、日々の業務で社内のイベント実績やアンケート結果の集計・分析を行う際、今回学んだグラフの効果的な使い方や論理的な整理手法を活かせると感じています。視覚的に参加状況や満足度の傾向を示すことで、関係者への報告は説得力を増し、次回のイベントへの改善提案もより具体的に行えるようになるでしょう。

データ・アナリティクス入門

軸を変えるデータの魔法

計算法はどう選ぶ? 単純平均は日常的に使っていたものの、加重平均や幾何平均、標準偏差といった手法についてはあまり馴染みがなく、データに合わせた適切な方法で数値を捉えることの重要性を改めて認識しました。何を明らかにしたいのかという目的を明確にし、その目的に合った手段を選ぶことが大切だと感じました。 グラフで現状を把握? また、平均値にばかり注目していた自分に気づき、縦軸と横軸に異なる値を設定して分布のばらつきを視覚的に捉えることで、新たな発見が得られる可能性を感じました。リード獲得チャネルごとの成約率や成約までの期間を、見やすいグラフで表現することで現状の把握に役立てたいと思いました。

クリティカルシンキング入門

俯瞰で掴む本質のタイミング

データで気づく課題は? データやグラフから課題を発見し、実践に移すことは非常に重要だと実感しました。しかし、実行に移すタイミングを見極めることも同様に大切であると感じました。 全体を見渡す視点は? 目の前の問題に気を取られがちですが、状況を俯瞰することで、真の問題点が明確になり、適切な解決策を導き出せるのではないかと思います。 本質共有の大切さは? 問題が発生した際には、表面的な問題だけに囚われず、本質を正確に把握し、チーム内で共有することが必要です。さまざまな角度から解決策を考え、一つひとつの案を共有しながら、最適なタイミングで実行していくことが求められます。

クリティカルシンキング入門

工夫が光る伝え方の秘訣

グラフはどう活かす? グラフは視覚的に情報を伝える際に非常に効果的です。表形式よりも直感的にデータの傾向や関係が把握しやすいため、それぞれの目的に合わせた使い分けが求められます。グラフの持つ特徴を最大限に活かすことで、伝えたい内容をより明瞭に表現することが可能です。 会議資料はどう作る? また、会議での説明資料を作成する際は、まずドラフトを作成し、伝えたいポイントを整理することが重要です。具体的には、ポイントが際立つようにフォントの色や書体で工夫を凝らしながら、客観的なデータを示すグラフを適切に取り入れることで、視覚的に相手の理解を促進させる取り組みが効果を発揮します。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

データ・アナリティクス入門

実情を活かす多角的分析のすすめ

目的や進め方は整っていますか? 分析に取り組む際は、まず目的や進め方を明確にし、関係者と認識を合わせることが重要だと学びました。また、1人で行う場合でも、フレームワークを活用して多角的な視点から分析し、偏りのない結果を目指すことが大切だと感じています。 今後の計画は具体的? 今後は、目的と求めるアウトプットをしっかりと定めた上で、データだけでなく現場の実情も踏まえた多角的な分析を実施していきたいです。各部門の意見を取り入れながら、What・Where・Why・Howの各ステップを丁寧に行き来することで、根拠ある改善提案へとつなげていくことを目指します。
AIコーチング導線バナー

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right