データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

データ・アナリティクス入門

仮説力が拓く学びの世界

仮説の基本って何? 「仮説」とは、ある論点に対する仮の答えであるという基本から学びました。目的に沿った仮説を立て、必要に応じて複数の仮説を検討することで、網羅性を持たせる手法が重要だと実感しました。 分類で何が見える? また、仮説は目的に応じて「結論の仮説」と「問題解決の仮説」に分類できるという点に注目しています。こうした考え方を取り入れることで、仕事の検証マインドが向上し、説得力も増すことを感じました。さらに、ビジネスのスピードや行動の精度を上げる効果にも期待が持てます。 戦略にどう活かす? 実際に、分析したデータをもとに売上傾向や市場トレンドを踏まえた仮説を立てることで、戦略を具体的に策定できる点に意義を感じています。複数の視点から仮説を立てることで、より多角的な分析が可能になるため、さまざまな場面で仮説の精度を向上させる取り組みが非常に有効だと考えています。

クリティカルシンキング入門

データを活かす!伝える力が磨かれる瞬間

伝え方はどうする? 伝えたいことをしっかりと理解することがまず重要です。そのうえで、自分と同様に情報を理解してほしい相手に対して、どのように表現すれば伝わりやすいかを考え、工夫して可視化します。重要なのは、伝えたことではなく、伝わったことが伝えたことと考え、どのように伝えるかを思考することです。 データの視点を変える? アンケートやデータを目の前にし、それを社内メンバーに共有するとき、一つのデータでも見る角度を変えてみることで、より理解を深めることができるかもしれません。そこで、ひと手間工夫をかけてみようと思います。 提案で納得できる? 自分でデータを取り扱う場面だけでなく、データを提供してくれる人に対しても、「このような切り口や見せ方ではどうか」と提案やアドバイスを行いたいと思います。これにより、より多くの人が情報を理解し、納得することができればと考えています。

クリティカルシンキング入門

目的がぶれない学びの軌跡

目的と問いに迫る? 今回の学習では、目的を明確にし全体像を把握すること、さらには質問を分類し具体的な問い合わせによって問題点を洗い出すことの重要性を理解しました。その上で、正しい問いの設定には振り返りが不可欠であり、適宜確認することが大切だと再認識しました。 本質問題をどう捉える? プロジェクトを推進する中では、課題解決に向けた取り組みの際、本質的な問題や真因を見失う可能性があると感じました。こうした状況において、常にイシューを意識することで、ぶれずに考え、適切な行動を起こせるのではないかと思います。 イシューは共有できる? これからは、まずイシューを共有できる体制を整え、何が課題で何が目的であったかを振り返り確認することを実行していこうと思います。また、データ分析においても、結論に先立つのではなく、背後に潜む事実をしっかりと確認する姿勢を持ち続けたいと考えます。

データ・アナリティクス入門

目的と仮説で磨く分析力

比較対象は同条件? 分析においては、比較対象が本当に「apple to apple」になっているかを確認する重要性を学びました。各要素が同一条件下で比較されているかをしっかりと検証することで、正確な分析に結びつくと感じています。 目的と仮説は明確? また、ある事例をもとにしたグループディスカッションを通して、データ分析に入る前に「目的」や「仮説」を明確にすることの大切さを再認識しました。これらが十分に整えられていないと、分析のアウトプットに本来の意図が反映されず、効果が薄れてしまうことに気づきました。 外部環境の整理は? さらに、外部環境分析や企業分析に取り組む際は、まず自らの分析の目的を整理し、仮説をしっかりと組み立てるプロセスを徹底する必要があると感じています。この手順を着実に実行することで、分析の質が向上し、業務全体での活用がより一層進むと確信しております。

アカウンティング入門

貸借対照表が映す経営の裏側

P/Lだけでは不十分? P/L(損益計算書)とB/S(貸借対照表)の関連性に注目し、B/Sを丁寧に読み解くことで、単なるP/Lだけでは把握できない企業の理念や方針を理解できる点に気づきました。利益面だけでなく、経営の方針を知ることで、物事を多角的に見る視点を得られると感じます。また、見た目が似通っているビジネスでも、実際には内容が大きく異なることがある点には、新鮮な発見がありました。 競合成長はどう見る? まずは、競合他社がどのような成長を遂げてきたのかを確認することが重要です。次に、自社の成長を把握するために、P/LとB/Sの動向を定期的にフォローし、改善策を検討します。そして、まずは他社のデータを集めることから始め、大手企業や個別店舗の資料が整えば、より深い比較が可能になります。さらに、フランチャイズに関する情報も収集すると、全体像を把握しやすくなると考えます。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。
AIコーチング導線バナー

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right