データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

アカウンティング入門

B/Sを読み解く新たな視点と気づき

B/Sの意味は? B/Sの本質的な意味について学びました。これは資金をいかに集め、どのように使うかを示すものです。事業を進める上で、借入の重要性も理解しました。適切に資金を調達することで、理念を実現し、事業を迅速に展開することができます。また、資金調達と投資の判断が非常に重要であることを学びました。 会社財務をどう見る? 業務で関わる会社の財務状況を意識して、その資金調達方法や資産構成を確認することで、事業の進展状況を把握することができます。特に、CVCでのベンチャー投資において、どのようなファイナンス計画があるのかを詳しく知ることが可能です。 報告書の読み方は? さらに、有価証券報告書を読むことで、興味がある企業のB/Sを調べることができます。その際に、どのような説明や解釈ができるかを考察し、数多くの報告書に目を通すことで、B/Sの読み方に慣れていくことが求められます。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

データ・アナリティクス入門

MECEで切り拓く論理の未来

MECEと分解のポイントは? MECEの手法を通して、漏れなく重複のない考え方の重要性を学びました。また、ロジックツリーを用いることで物事を分解して考える方法にも触れました。ただし、細かく分解しすぎるのではなく、適度な粒度で整理することがちょうどよいと感じました。 製品サポートはどう変わる? 個人的な感覚に頼るのではなく、フレームワークを活用することで、よりロジカルかつ具体的に意見を伝えることができると思います。私の担当している製品サポート業務では、お客様からの問い合わせ対応や内部連携の課題があるため、業務をさらに整理して取り組む必要があると感じました。 課題解決のヒントは? 今後は、ロジックツリーを活用して課題を分解し、詳細に洗い出してみます。さらに、MECEの観点から整理されているかを再確認し、どこに課題があるのかを特定した上で、具体的な解決策を検討していく予定です。

クリティカルシンキング入門

イシューを見つけた学生の声

なぜイシューを明確にするの? 現段階で解答すべき問い、すなわち「イシュー」を常に明確にすることが求められます。これを実現するためには、まず「問い」の形で捉え、具体的な視点で考えることが大切です。そして、一貫してその焦点を押さえ続けることが必要です。 どうやって組織で共有する? また、組織全体でイシューを共有することで、同じテーマに対しても状況や時期によって本質が見えにくくなることを防ぐ工夫が求められます。製品の満足度ポイントのデータ整理や業務テーマの報告、日々の業務改善提案など、様々な場面でこの考え方は活用されるでしょう。 どんな情報が肝心? 特に、相手が知りたい情報を的確に判断し、厳選した情報を提示することが重要です。こうすることで、情報を得た相手がすぐに行動に移せるかどうかを意識しながら、何度もイシューを見直して報告資料を整理していく姿勢が求められます。

データ・アナリティクス入門

5視点で探る仮説と分析の力

分析はどう始まる? 分析は比較から始まるという考え方と、問い・仮説設定・検証というサイクルが実務に合致する点に強く共感しました。また、インパクト、ギャップ、トレンド、ばらつき、パターンの5つの視点をすべて捉えることで、初めて価値ある情報が得られるという認識が深まりました。 変化と課題は何? 先週と大きなテーマの変化はなく、内容自体も大きく変わりませんが、5つの視点を活かし、業務でのアウトプットが比較によって生み出される価値に繋がると考えています。一方で、分析を活用する際の課題として、仮説検証のサイクルの速さや仮説の精度が挙げられます。特に、データ分析の初動を誤らないことが、仮説の精度を高める上で重要だと感じました。 仮説の壁をどう乗る? また、「仮説を立てることが難しい」との声をよく耳にします。皆さまはどのような方法で仮説を構築されているのか、ぜひ知りたいと思います。

リーダーシップ・キャリアビジョン入門

行動で切り拓くリーダーの道

目指す姿は何ですか? リーダーには、ポジションや地位は関係なく、目指す姿をしっかり描くことがリーダーへの第一歩だという考えが強く印象に残りました。また、「行動=能力×意識」という考え方を初めて知り、行動する上でこのバランスが必要であると実感しました。 行動と意識の関係は? 日々の業務やワークの場面では、意識が抜けがちであるため、まずは自分自身が意識を持って行動に移すことが重要だと感じています。法人化に向けた研修体制の作成においても、意識と能力の両面をしっかり整え、実際の行動に反映させる必要があると考えています。また、育成の観点から、能力は十分にあるものの意識がもう少し必要だと感じる方へのアプローチ方法としても、この考え方が役立つと感じました。 成果にどう結びつける? 今後は、「行動=能力×意識」という考え方を、具体的な成果にどのように結びつけるかが課題となるでしょう。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

戦略思考入門

DX推進を始める勇気と挑戦

優先順位の見直し方法は? リソースが限られているため、費用や時間の使い方に優先順位を付けることが重要です。その際、従来のやり方を見直すこともあります。たとえば、対面会議をオンライン会議に変更したり、購入頻度の低い顧客に対してデジタル接点を増やすなどの工夫が求められます。 なぜDXに注目? 私の所属する会社は、まさにDX推進を始めたばかりであり、現在進行形で従来のやり方を根本から見直しています。営業活動やバックオフィス業務のあり方を再考していて、これらは日常業務のさまざまな場面で役立つと考えています。 新たな試みを模索? 私は10月からDX推進部に配属され、営業活動の在り方やバックオフィスの業務手順を見直す作業を進めています。日々、ベンダーとともに会議を行い、従来の枠組みにとらわれず、会社にとって最適な方法を常に模索し、多くの意見を積極的に出していきたいと考えています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

「重要 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right