データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

戦略思考入門

捨てる勇気で見つける新たな一手

何故捨てると考える? 業務の中で「捨てる」という行為について、戦略的な視点を持つことの重要性を再認識しています。これまで、慣習的に行っていたことを手放す際に、数値化や定量化といった方法で視覚化しながら、何のために捨てるのかという方向性を明確にすることを意識してきました。 感覚依存はどうして? 日頃から業務の多岐にわたる要素を整理する上で、「捨てる」という行為は欠かせないものの、その判断は感覚的なものに依存していたと感じています。そこで、より計画的・戦略的に考える意識づけが必要と考えています。 効用最大化って何? 効用の最大化と方向性の明確化という二つの視点から捨てることを捉えることが、業務改善にとって有効です。たとえば、作業の一部を生成AIが担えると判断すれば、その部分を手放すことで貴重な時間を確保することができます。 チーム意見交換は? さらに、方向性の明確化を通じた業務整理についても、チーム内で意見交換をし、より良い改善策を模索していきたいと考えています。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

リーダーシップ・キャリアビジョン入門

聞く力を磨く!チームの心をつかむ方法

聞く姿勢、どう高める? 聞く力の重要性を改めて実感しました。私にはまだ十分な聞く力が備わっていないと感じています。このため、現在所属している有志メンバーのチームにおいても、各メンバーの状況や気持ちに配慮できるよう質問力を強化したいと思っています。単に聞くのではなく、意図して聞くことを実践していきたいと考えています。 どうやって全員交流? 部署が異なるため、定期ミーティングの場だけでは関わりが限られ、全てのメンバーと顔を合わせることは難しい状況です。そこで、日ごろから使用しているグループチャットを活用し、業務の忙しさやそれぞれの背景、状況を深く理解するためのコミュニケーションを実践していこうと考えています。 個々の悩み、どう理解? 「聴く」ことを意識的に行うためには、部署による業務の違いや繁忙期と閑散期、日勤シフトや夜勤のある業務など、それぞれの大変さや有志活動における個々の悩みを理解することが不可欠です。個々を深く知る意識を持ちながら、この活動を進めていく所存です。

クリティカルシンキング入門

課題解決の難しさと新たな視点の発見

振り返りの重要性とは? 総合演習を通じて、これまで学んだことをバランスよく振り返ることができました。しかし、課題の本質を見極めて解決に導くのがいかに難しいかを改めて痛感しました。仕組みを理解するだけでなく、適切な判断を行うためには十分な情報収集の努力も不可欠だと感じました。 理論活用の実践法は? 自身の業務においては、まずは自分自身の考え方を変えていくことが重要です。今回学んだ理論や思考の偏りを理解し、それを活用します。そして、周囲のメンバーを解決に導いたり、論理的に説得する際には、話の組み立てや資料の構成などに学んだことを活かしていきたいと思います。 ロジカルに考える習慣とは? 物事を考える際には、一度立ち止まって冷静に考える習慣を持ちます。また、周囲のメンバーから相談を受ける場面では、論理的に考えて解決に導くことを心掛けます。その際には、話し方や報告、説得の場面でロジカルに話をできるよう、定着するまでは時間をかけてでも話の組み立てを行うようにしたいと思います。

アカウンティング入門

決算書で読み解く経営の知恵

B/SとP/Lはどう連動? B/Sは、お金の使い方と集め方を理解するためのツールであると同時に、P/Lと連動する点が印象的でした。たとえば、利益剰余金と当期純利益が一致するため、当期純利益が純資産に計上されると、資産の部も同額増加し、経営全体で資産がどんどん増えていく仕組みが分かりました。 資産と負債のバランスは? また、顧客価値の提供を目指す中で、流動資産と固定資産の割合が業種によって大きく異なる点、そして借入金による資金調達が効果的な場合があるという点にも気づかされました。さらに、お金の集め方についても、流動負債、固定負債、純資産のバランスが業種や創業時の資本金の集め方により異なるため、決算書類を通してこれらの違いを理解することが重要だと感じました。 決算書の活用法は? 直接の業務にすぐに活かせる点は限られるかもしれませんが、事業者支援の現場や、特に過疎地域の教育や医療など、インフラに関する政策立案のヒントとして決算書類を活用できる可能性があると実感しました。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

リーダーシップ・キャリアビジョン入門

知識を実践に変える日々の挑戦

なぜ行動が大切? 振り返ることの大切さを改めて実感しました。リーダーシップやキャリアビジョンの講義では、単に知識を得るだけでなく、実際に行動に移すことの重要性を学びました。講義の内容を覚えているだけでは、せっかくの学びが無駄になってしまうと感じました。 どう原則を実践? また、リーダーシップやキャリアビジョン自体は、シンプルな原則に基づいたものだと実感しました。その原則を日々の業務に継続して落とし込むことが、最も大きな課題だと思います。たとえ部下を持っていなくても、業務上の困難に直面した際には、今回の講座で得た学びを思い出すことで、解決へのヒントが見つかるのではないかと考えています。 何故記録するのか? この学びを忘れないために、普段持ち歩く手帳に講座で学んだ内容や気付きを記録することにしました。業務でうまくいかなかった経験や、現状の課題に直面した際、当時何を学んだのか、そこから今に繋がるアイデアがないかを自分に問いかけるようにしていこうと思います。

「重要 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right