クリティカルシンキング入門

数字が織りなす学びの発見

データ加工でどんな発見? 一つのデータでも、加工を行うことで新たな情報が浮かび上がることに驚かされました。例えば、比率を計算したりグラフ化することで、単なる数字だけでは見えなかった側面を発見することができました。このような手法は、社員の意識調査の分析にも応用できそうで、回答結果をグラフ化したり、各設問ごとに回答数に基づいて順位付けを行うことで、従来の数字だけでは把握しづらい新たな視点を引き出せると感じています。 仮説の偏りはどう防ぐ? また、データを分解する際には、仮説を立てることで具体的な傾向が明確になりやすい一方、固定概念にとらわれるリスクもあると実感しました。そのため、年代・性別・職種・居住地など、さまざまな角度からの分析を試みることで、全体像を見失わずに対応策を考えることが可能になると考えています。しかし、仮説に偏ってしまうと全体像が見えなくなる場合が多いため、他にも思考の偏りを防ぐ方法があれば、ぜひ教えていただきたいと思います。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

グラフでひもとく学びの秘密

ビジュアル化はどう極める? データ分析において、ビジュアル化は非常に大きな価値を持つと実感しました。正しいビジュアル化を実現するためには、データの加工や適切なグラフの選定が鍵となります。特に、円グラフとヒストグラフのどちらを用いるかで迷うことが多いため、今後は意識を高めて判断していきたいと考えています。 提案資料の魅力は? 現時点では業務上頻繁に活用する機会はないかもしれませんが、将来的に提案資料を作成する際、ビジュアル化にこだわった資料作成を心がけることで、提案内容の有用性を直感的に伝えることができると感じています。 グラフ加工はどう学ぶ? また、今回の履修ではヒストグラフや円グラフなど、さまざまなグラフの種類を学び、大量のデータをどのように加工していくかについても学習しました。さらに、ビジュアル化した情報の伝え方についても工夫する必要性を再認識し、どの方向性で判断いただきたいかを明確にすることが重要であると理解しました。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

クリティカルシンキング入門

問いと理由で進む新たな未来

誰の視点を意識する? WEEK1の振り返りを通じて、今後の自分のアクションにつながる目標を整理しました。これまで、考えやすい部分からまず「解決策」を検討してしまう傾向がありましたが、本来は「誰の視点で」「何のために」「どんな問いを立てるか」というプロセスを意識することが大切だと実感しています。今後は、解決策に至った理由を振り返る癖をつけ、一人では気づかない点も見逃さないよう努めます。 なぜ数値に注目する? また、毎週のレポート作成では、KPIの変化に対して「なぜ増えた/減ったのか」という仮説を3つ以上挙げることで、データに基づいた分析を深めることを目指します。さらに、会議で議論が停滞した場合は、「今日決めるべきこと」を整理して提示することで、議論を前に進める工夫を行います。 どう説明を伝える? 提案資料を作成する際には、必ず「施策→狙い→期待成果」の流れを明確にし、読み手にわかりやすい形で説明することを心がけています。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

クリティカルシンキング入門

多視点で見抜く真の課題

表面だけで見抜ける? 表面的な数字だけで判断すると、真の課題を見落とす恐れがあります。一つの切り口に固執せず、複数の視点から分析を行うことが重要です。また、分析を行う際は、分解方法がMECEになっているかどうかを意識し、層別分解、変数分解、プロセス分解などの手法を活用することが求められます。 多角分析は効果的? 例えば、管轄する組織の毎月の営業成績を分析する場合、Excel上の組織ごとの数字だけに目を向けるのではなく、様々な切り口や増減率といった要素を加えて事象全体を把握します。これにより、真の課題への特定がよりスムーズになるでしょう。 確認作業は万全? さらに、データ分析の際は、営業所、担当者、エリア、製品といった切り口がMECEになっているかを常に確認し、率などの加工を行うことで、現れている事象を正確に捉えることが大切です。第三者の視点によるチェックも忘れずに行い、より正確な分析を心がけることが必要です。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

クリティカルシンキング入門

イシュー設定が成功への鍵と実感した学び

イシューを具体化するには? イシューの設定が課題解決において重要であることが身をもって実感しました。特に、問いを明確かつ具体的に設定し、全体の前提や認識をそろえることが不可欠です。また、イシューを設定した後も、常にその意識を持ち続けることが大切です。議論や思考が途中でそれないようにするためです。 営業マネジメントにおける効果的なサイクル 営業マネジメントにおいては、数値達成や業績向上のために、適切なイシュー設定と、その解決策を検討・実施するサイクルが求められます。今回学んだ内容は、自チームのイシュー設定から数値改善まで、実践で試してみる価値があると感じました。 データ活用の力をどう身につけるか? 課題解決に際して何をイシューとするのか、これまでの数値データを活用して見極める力を習得したいと考えています。そのため、改めてデータを整理し、ピラミッド・ストラクチャーを使って、イシューの書き出しと整理を進めていきます。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right