データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

マーケティング入門

シーンで変わる製品の本当の価値

どんなシーンが大切? 商品の機能そのものだけに注目するのではなく、どのような場面で顧客が求めるかを起点に考える重要性を実感しました。同じ防水性能であっても、現場での使用と雨天時の対策では、求められる価値や伝え方が大きく異なります。ターゲットを変えることで、同一商品でも別の価値を再定義できるのだと感じました。 どう企画を実現する? また、セグメンテーションや6R、ポジショニングといったマーケティングのフレームワークを確立し、自社の新しい価値をしっかりと打ち出す必要性があると学びました。これらの手法を活用することで、従来の属性別アプローチにとらわれず、行動や価値観、具体的なシーンに基づいた提案が可能となり、新たな顧客層へアプローチすることができると考えています。同時に、取引先に対しても市場性や費用対効果をロジカルに説明することで、企画提案や商談の成功につなげるための提案力と説得力が向上する点も印象に残りました。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

戦略思考入門

顧客視点で探る差別化のヒント

本当の顧客は誰? 顧客が誰であるかをまず明確にすることが重要だと感じました。ターゲットをはっきりさせることで、どのような判断軸で物事を進めるかが明確になり、日常の中で見落としがちな点にも気づくことができるという印象を受けました。 価値はどう伝える? また、顧客の視点から価値を提供できるかどうかを考え、実現可能性や持続可能性を検証することの大切さも実感しました。具体的には、どのような施策が自社にとって独自性を持ち、他社との差別化につながるか、そのために自社の強みを整理することが必要だと考えます。 VRIOで差を見極め? さらに、差別化の手法としてVRIOのフレームワーク(価値、希少性、模倣困難性、そして組織の活用能力)を活用する点も非常に参考になりました。このフレームワークに基づいて施策を検討することで、提供する価値を一層明確にし、具体的かつ効果的なアイデアに結びつけることができると実感しています。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

仮説思考が導く学びの未来

分析と仮説のバランスは? データ分析の軸として「分析は比較である」だけでなく、仮説思考についても学びました。仮説を立てる際、バイアスによる思考の偏りが影響する可能性があるため、一度他者の意見を聴くなど、客観的な視点を取り入れてバイアスを抑える工夫が重要だと感じました。 データ収集はどうする? データ収集については、オープンデータの活用も有用ですが、世の中に存在しないデータは自分で集めることが大切だと学びました。確かにこの作業は大変ですが、地道な取り組みが結果として大きな意味を持つと実感しました。 報告資料の工夫は? また、月次報告の資料作成に関しては、現在提示している数値とグラフの表現方法を見直す必要性を感じました。具体的には、数値に関しては棒グラフ、比率については円グラフを使用するなど、視覚的な情報の伝え方を多様化し、リソースの過不足など新たな課題が明らかになるかどうかを検討したいと思います。

データ・アナリティクス入門

仮説が開く新たな視野

どうやって仮説を立てる? 「仮説を立てる」ことの大切さとして、まず、3Cや4Pなどの関連フレームワークを用いることで、偏った視点に陥らずに物事を捉えることができる点が挙げられます。仮説を設定することで、問題解決へ向けた具体的なアプローチが見えてくるだけでなく、説得力のある説明が可能になると感じました。結果として、自身の意識が向上し、業務のスピードアップや行動の精度の向上に繋がると実感しています。 偏った視点をどう変える? 既存の業務では、どうしても問題解決の視点が偏る傾向にありました。そこで、関連フレームワークの活用が、より広い視野に立った提案に結びつくと思います。まずは、現在抱えている事業の課題に対し、既存情報と新たに必要な情報を整理するところから始めました。必要に応じて関係部署へのヒアリングや、他の事例の調査も実施し、その結果をもとに、より具体的で説得力のある提案へと発展させることを目指しています。

マーケティング入門

機能を超える、体験の魔法

機能と情緒の違いは何? 商品やサービスから顧客が得られる価値は、大きく「機能的価値」と「情緒的価値」に分けられます。機能的価値だけの場合、他社に簡単に模倣されてしまう恐れがあるため、体験としての情緒的価値を提供することで、より差別化が可能となり、選ばれる商品やサービスを確立できると理解しました。 情緒の価値、なぜ大切? メーカーは特に機能的価値を重視しがちですが、現代は多くの商品が市場に出回っているため、情緒的価値を高めることが必須です。消費者の購入プロセスにおける心理を考慮し、どのように自社製品を差別化できるかが重要だと感じました。 体験で差を出す鍵は何? 講義では、体験による差別化が鍵であると指摘され、社内にある資産が十分に活用されていない場合もあるとの話が印象に残りました。今後は、業務において顧客のニーズをしっかりと考え、どのように差別化を図れるかを具体的に検討していきたいと思います。

クリティカルシンキング入門

問いから生まれる新たな学び

正しい問いは何? 「問い」を誤ると、その後の努力が無駄になる可能性があると感じました。そこで、常に「問い」から始め、本当に正しい問いであるかを考えることの重要性を学びました。また、そのプロセスを共有し、確認し続けることも大切だと認識しています。 会議で問いは必要? IT業界においても、そもそもの「問い」が誤っていたり、思い込みにより不要な作業が生じている場合があります。したがって、会議や議論の場で「問い」を意識的に共有することで、無駄を省き生産性を向上させられるのではないかと考えています。 導く問いは何? 今後も常に「問い」から出発し、その正しさを確認・共有する姿勢を業務に取り入れていきたいと思います。また、クリティカルシンキング研修で学んだ自分の思考の偏りに気づいた経験を踏まえ、学んだ手法や考え方を活用しながら論理的な分析やグラフ作成など、客観的な判断ができるよう努めたいと考えています。

クリティカルシンキング入門

実践で身につく戦略の極意

実践例の学びは何? マクドナルドの実践例を通じ、これまで学んだデータの分解や加工の考え方が非常に実践的に活用されていることを実感しました。課題が明確になり、その解決策を考えるプロセスは、実際の事例に基づいているため、理論だけでなく現場の感覚も身につけることができ、非常に腹落ちしました。簡単な問題設定でしたが、大企業の経営戦略を疑似体験できたことで、臨場感を持って思考することができたと感じます。 仕事にどう活かす? また、これを自身の仕事に置き換えると、顧客への営業やマーケティングの場面で大いに役立つと考えています。顧客から自社商品やマーケットに関する問い合わせがあった際、本質的に何を求めているのかを深く考えることで、的確な回答が可能となり、その結果、顧客の信頼を獲得できるのではないかと思います。今後は、会話の中で常に「本質的な課題は何か」といった点を念頭に置いて対応していきたいと考えています。

データ・アナリティクス入門

目的意識で切り拓くデータ分析

目的は何のため? データ分析を始める際は、まず「何のためにこのデータを分析するのか」という目的意識を常に持つことが大切です。あらかじめ、どのような答えが得られるかをイメージしながら、分析に取り掛かると良いでしょう。 仮説と可視化の意義は? また、データ分析のステップとして、仮説思考に基づいたロードマップを設定することで、全体の目的や認識を共有し、より納得のいく結果が導けます。さらに、データを可視化すると、さまざまな視点や切り口、解釈の可能性が広がり、複数の判断軸を持つことができます。 実務の判断はどう? 実務では、データを活用する「ここぞというタイミング」を見極めることも重要です。そのために、何を解決したいのか、どのようなデータが必要か、データの収集方法やその後の展開についても具体的に考える必要があります。まずは、手元にあるWeb解析のデータを確認し、整理を進めてみましょう。

クリティカルシンキング入門

ピラミッドストラクチャーで発見する新視点

整理の成果は? ピラミッドストラクチャーを活用して自分の考えを整理することで、新たな発見があることを実感しています。考えを深掘りすることにより、自分が設定した仮説が正しいかどうかを再確認することが可能です。また、伝え方の組み立てとしても非常に有効で、これまでの意思決定がより明確に見える学習となりました。 構成の見直しは? 例えば、ポイントを作成する際には段階を踏んで進めていましたが、自分の考えを同じように組み立てることができていないことに気づきました。プロジェクトが進行している現場でも、もう一度自分の考えをピラミッドストラクチャーを使って見直したいと思います。 プロジェクトで何が? まずは、現在進行中のプロジェクトを題材にして学んでいきたいと考えています。深掘りすることで新しい考えが生まれるかもしれませんし、どのように伝えたらよいかをさらにわかりやすくできるのではないかと思います。
AIコーチング導線バナー

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right