デザイン思考入門

とことんユーザー体験を追求する

ユーザー体験はどう感じる? 金融機関で個人株主向けのサービス開発に携わる中、金融機関であるがゆえに自分自身で個別銘柄の株を購入できず、ユーザーとしての体験がなかなか得られない状況です。一方、投資信託は購入可能ですが、商品が多岐にわたるため、ある程度ユーザーターゲットを絞る必要があると感じました。 夢中になる理由は? また、業務から離れて、自分が真に夢中になれることを事業化するシナリオを考えると、デザイン思考の本質により迫れるように思います。現在の業務ではユーザー体験を得にくいため、一言で言えば「とことんユーザーになる」ことが大切です。そして、チームは多様な専門性を持つ少人数体制が理想的だと考えます。こうした視点は、現職での取り組みとは対極に位置しており、職場でのデザイン思考活用には伸び代が限られていると感じました。

マーケティング入門

信頼が導く本音の宝探し

本当のニーズとは? 顧客ニーズは必ずしも一つに絞られるわけではなく、本人すら認識していない複雑な側面が存在します。真のニーズを把握するためには、調査を通じてフィードバックを得ることが有効ですが、日本人の特性や報酬型の場合、遠慮して本音が聞きにくいケースもあるため、まずは信頼関係を築いてから本題に入ることが大切です。 潜在ニーズは何? また、真のニーズをさらに深く探ることで、新たな発見につながる可能性があります。自社の製品領域にとらわれず、顧客が直面している状況や立場を広い視野で捉え、他の潜在的なニーズについても丁寧に掘り下げる姿勢が求められます。 信頼はどう築く? 今後は、各種キャンペーンのアンケートや顧客との打ち合わせの機会を積極的に活用し、信頼関係の構築を意識しながら取り組んでいきたいと思います。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

クリティカルシンキング入門

論理的プレゼンで成功する秘訣

ピラミッドストラクチャーの効果は? 新規企画の社内説明の際、ピラミッドストラクチャーを意識しました。まず、決裁を取りたい内容をはじめに記載し、その理由付けを行い、さらにその根拠を示しました。この手法を用いることで、論理的に整理されたプレゼンテーション資料を作成できました。 社内説明での活用法は? 社員向け説明の際も同様にこの方法を活用できると感じました。次回の社内説明のプレゼンテーション資料を作成する際も、同じようにピラミッドストラクチャーを意識した設計図を作成する予定です。 情報を伝えるコツは? 各理由付けや根拠の説明スライドについて、1スライド1キーフレーズを基本として、一文を長くしないよう注意しました。これにより、情報が具体的で理解しやすいプレゼンテーションが可能となりました。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

戦略思考入門

実践に生きる学びのヒント

実践活用の方法は? 今週は講義全体の振り返りを行いました。学んだ知識を自分に落とし込むためには、実際に活用するしかないと感じています。明確なゴールに向かう道のりを描くため、フレームワークを用いた多角的な分析が有効だと実感しました。一部の情報だけに頼った分析では、効果的な戦略を描くことは難しいため、バランスの取れた視点が大切だと考えています。今後は業務の中でこれらの学びを実践し、定着を図っていきたいと思います。 戦略はどう考える? また、自分が担当する課の方向性や今後の戦略を検討する際に、講義の内容が大いに役立つと感じています。他者との差別化を維持しながら持続可能な戦略を立てるために、今後も変化する環境に柔軟に対応しつつ、長期的な視点を持って取り組んでいきたいと考えています。

戦略思考入門

論理で明かす経済性の秘密

規模の経済性をどう捉える? ゲイルで学んだ規模の経済性と習熟効果は、これまで感覚的に感じていたことが論理的に整理され、非常に印象に残りました。また、バリューチェーンと範囲の経済性についても、自社の資源を他の事業で活用する際に、新規事業検討のための自社分析や市場環境の把握が重要であると再確認できました。 新戦略のヒントは何? ウェブサイト運営で新しいコンテンツを検討する中、これまで感覚に頼っていた部分を、今回学んだ独自性、模倣困難性、そして顧客に対する価値拡大の視点を取り入れることで、より具体的かつ戦略的なアプローチが可能になりそうです。 理論で見つけた気づきは? また、ビジネス経験を理論化し言語化することで、新たな気づきを得られたことが大変有益でした。

データ・アナリティクス入門

探る仮説、見える可能性

仮説思考の意味は? 仮説思考の重要性について学びました。複数の仮説を立て、フレームを活用することで検証すべき論点を網羅的に整理できる点が印象的でした。仮説を証明するためのデータ収集では、支持するデータだけでなく、他の仮説を排除するための情報も集める必要があると理解しました。このプロセスにより、検証マインドが向上し、説得力が高まる好循環が生まれると感じました。 現場での工夫は? コンサルティングの現場では、プロジェクト開始時に既に大論点が明確な場合が多い中で、自ら複数の仮説を検討し、大論点を中論点や小論点に分解して検証ポイントを明確にする作業が求められます。また、上位者との壁打ちを通じて精度を高めることで、効率的な問題解決が実現できると実感しました。

戦略思考入門

本当の強み、ここに見える

顧客ターゲットの見直しは? 差別化について考える際、まず自社が対象とする顧客を明確にし、その顧客にとって価値のある施策を実施する必要があります。こうした施策は、競合他社が簡単には模倣できない点が重要であり、同時に自社のコスト構造や持続可能性についても十分に検討する必要があります。 組織力向上は可能? また、初めて知ったVRIOというフレームワークですが、よく考えてみると既に活用している部分があると感じました。自社の強みをVRIOの観点から見直すと、「模倣困難性」には高い評価が得られる一方で、「組織」の部分が弱いと捉えられます。組織力を向上させることができれば、一気に成長が期待できるものの、その実現は非常に難しい課題だと考えます。

データ・アナリティクス入門

エクセルで紐解く学びのヒント

どんな分析で進める? これまでの業務で、約100名を対象とした分析を行う機会がありました。エクセルを用いたビジュアル化が簡単にできるため、基本的には中央値と標準偏差を中心にデータの分布を確認していました。しかし、平均値など他の代表値も併せて計算し、データ全体を多角的に眺めた上で仮説を立て、分析を進めるフローが重要だと感じています。 どう観察すれば精度? また、サンプル数が少ない場合であっても決めつけず、平均値などを算出してデータをしっかりと観察することで、より精度の高い分析が可能になると考えています。このようなフローを週に1回以上実施し、標準偏差などの統計値は適宜AIに質問したり、エクセルの関数を活用するなどして算出しています。

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right