データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

データ・アナリティクス入門

データで解く3Cの秘密

3C/4Pの意義は? 別講座で学んだ3C/4Pといった基本的なフレームワークが、さまざまな場面で十分に活用できることを実感しました。まず、データをざっくりと切り出してから眺めることで、課題をもとに仮説立案がしやすくなる点が非常に有効であると学びました。また、3Cに関しては、多少の変形を加えて3つの象限を定義することが重要だと感じています。 仮説はどう構築する? 対応ケースの増減について仮説を立てる場合には、3Cを変形し、関連する要素に置き換えてデータを俯瞰的に分析する手法が考えられます。その視点としては、C:Customer、C:Contact(ケースをあげる人)、C:Customer Engineer(ケース対応する人)といった切り口でデータを整理することにより、具体的な洞察が得られるのではないかと考えています.

マーケティング入門

名前ひとつで未来が変わる

名称変更が与える影響は? 今回の学習では、新商品の普及に寄与する5つの要素―比較優位、適合性、わかりやすさ、試用可能性、可視性―に焦点を当てました。特に、商品の名称変更が消費者の連想や期待にどのような影響を及ぼすかを事例を通して学びました。同じ商品でも、ネーミング次第で消費者が抱くイメージが変わり、結果として売上に差が生じる可能性がある点が示され、顧客ニーズやターゲットセグメントの分析の重要性を実感しました。 顧客ニーズの真実は? 自社製品においても、現在顧客ニーズの調査を開始した段階です。自分たちが想定している商品仕様が実際の需要とどの程度合致しているのか、また顧客が期待する機能と価格のバランスについて検証中です。今後は、顧客訪問やヒアリングを通じて、より具体的な情報を収集し、製品開発に反映させていく予定です。

クリティカルシンキング入門

問いが導く課題解決のヒント

問いの本質とは? イシューを考える際は、まず「問いは何か」を明確にすることが重要です。その上で、課題分析に取り組むと、思考が横道に逸れることを防げます。また、問いをチーム全体で共有することで、組織としての方向性が一層明確になると感じました。 課題解決はどう考える? 例えば、社員のエンゲージメント調査で評価制度の納得度が低いという結果が出た際、課題の真因を探り、解決策を考える必要がありました。その際、評価制度を細かく分解して課題分析を始めたため、本来解決すべき問いが何であったか見失い、方向性を逸れてしまった経験があります。まず「社員の評価納得度を改善するためにはどうすべきか」という問いを立て、納得度を要素ごとに分解し現状を把握しながら課題設定を行えば、よりスムーズな検討が可能だったのではないかと考えます。

戦略思考入門

取捨選択で進む未来への一歩

不要なものは捨てる? ビジネスの効用を最大化するためには、不要なものを取り除くことが不可欠です。何を捨てるかを判断する際、時間配分や広告宣伝などへの投資対効果が一つの基準となります。また、トレードオフが生じた場合には、より重視すべき要素に資源を集中させることが求められます。両方に手を出してしまうと、中途半端な結果に終わるリスクがあります。 情報取捨はどうする? 私は勤務先で企業情報の分析と、取りまとめ資料の作成を担当しています。資料には、対象企業が持つ資源プロジェクトの情報を記載する欄がありますが、企業によっては取組むプロジェクトの数が多く、記載すべき情報が溢れてしまうことがしばしばあります。そこで、まずは資料の使用者が重視する要素を見極め、周囲と相談しながら必要性の低い情報を捨てる判断を心がけています。

クリティカルシンキング入門

全体把握でMECEを極める

どのように分解する? 分解作業において、要素を漏れなく洗い出すのが自分には苦手であると気付きました。ダブりなく整理する点は、既に出した切り口を見直すことで対処できるものの、漏れを防ぐには全体を捉え、どのように分解すればMECEになるのかを常に意識する必要があると感じました。また、分解の結果、明確な傾向が見えなくても、それ自体が一つのデータであり、次の考察に役立つという考え方にも納得しました。 労務データの新視点は? 労務問題を考える際、組織ごとの残業時間やエンゲージメントサーベイといった複数のデータは活用してきましたが、データの加工や組み合わせによる新たな切り口で分析する経験は少なかったです。今後は、サーベイの種類を分類し、データを整理・集計することで、より新鮮な視点から組織を見据えていきたいと思います。

クリティカルシンキング入門

学びが心を動かす瞬間

イシューの本質は? まず、イシューとは、今ここで考えるべき問題を意味します。扱うべき事柄を問いの形で設定し、何に着目するのかを明確にすることが大切です。そのため、常にイシューから逸脱しないよう意識しながら議論を進めます。 切り口の選び方は? 次に、イシューを分かりやすくするため、複数の切り口で要素に分解します。数字については、一手間加えて分析することで、より具体的な視点を持つように努めます。 議論はどう進む? また、問題に取り組む際は、いきなり考え始めるのではなく、まずイシューを明確に特定し、その構成要素に分解してから本格的に検討するようにします。複数のメンバーで取り組む場合は、各自がイシューや要素を共通認識として把握できるよう、ホワイトボードなどに記録しながら議論を開始することが求められます。

戦略思考入門

内外の視点で創る自分改革

分析はどう役立つ? 現状分析は意思決定において非常に重要だと感じます。強みと弱みは表裏一体であり、両者を完全に分けることは難しいですが、恐れずに強みを最大限に活かすことが求められると実感しました。一方で、外部環境や社会情勢といった要素は正確に分析するのが難しく、これらの分析が意思決定にどのように影響するかをしっかりと理解する必要があると感じました。 理想実践のヒントは? 今回学んだフレームワークを活用して、チームの現状と理想の姿を明確にしていきたいと考えています。内在的な要因だけでなく、外部の要因に対する分析も重要であり、そのプロセスをより深く学ぶ必要性を強く感じました。外部要因の正確な分析には一定の経験と広い視野が必要だと認識しており、今後もさらなる学びを通じて、そのスキルを磨いていくつもりです。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

クリティカルシンキング入門

根本原因に気づく学びの瞬間

なぜ根本原因を追究する? 今週のクリティカルシンキングの講座では、問題解決において表面的な対策ではなく、なぜ問題が発生しているのかという根本原因に注目する重要性を学びました。単に一時的な解決策に飛びつくのではなく、問題の背景をしっかりと分析し、再発防止につながる本質的な対策を考える必要性を実感しました。 どうして改善が必要なの? また、人事や労務の実務においても、たとえば「残業が多い」「有休が消化されない」といった相談に対して、単に働き方の調整を促すだけでなく、部署別や業務内容、従業員の属性などさまざまな要素を細かく見直すことが求められます。それぞれの要素を分解して根本原因に基づく改善策を提案することで、より効果的で持続可能な職場環境の改善が実現できると感じました。

クリティカルシンキング入門

分解で見える未来の戦略

なぜ事象を分解する? MECEの考え方を取り入れ、事象を分解することの重要性を再認識しました。分解には、層別分解、変数分解、プロセス分解といったさまざまな手法が存在し、それぞれの方法で要素を整理することができることが分かりました。これまで体系的に分解要素をカテゴライズしていなかったため、大変驚きと新鮮さを感じました。 営業戦略はどう変わる? また、営業やチームの目標策定の立場に立つ中で、どの顧客にどのようなアプローチをすべきかを考える際にも、MECEを活用した分析の有用性を実感しています。特に、売上、利益率、商材、受注頻度といった観点から要素を分解することで、アプローチが不足している部分を具体的に把握し、より効果的な戦略を立てることができると考えています。
AIコーチング導線バナー

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right