戦略思考入門

IT企業向け経営戦略の新たな視点を学んで

差別化の新たな視点とは? これまで行ってきた「差別化の検討」では、「他社製品にはない新しい機能」や「他社サービスにはない新しいサービス」、「当社独自の技術やノウハウ」といった限定的な考え方しか持っていなかったことに気づいた。これらがあれば「IT企業としての差別化になる」と考えていたからだ。しかし、変化の激しい業界で継続的に自社の優位性を保つためには「VRIO」といった分析(評価)が必要であることや、ポーターの「3つの基本戦略」を知ることができて良かった。また、「差別化」を考えるのは難しいものであり、「集合知」や「外部の力」の活用、さらには「ライバルを意識し過ぎないこと」が大事だという話が印象的だった。 VRIOを人材戦略にどう活用? 次期中期経営計画において「VRIO」に当てはめて考えてみたいが、現段階では各要素に対するイメージが湧いておらず、自社の課題が膨らむばかりで途方もない感じがしている。そのため、時間がかかりそうだし、個人としても会社としても何か結論を出すのは相当難しい気がする。まずは、身近な領域として自部門の担当領域である人材採用戦略において「VRIO」を活用してみたい。 外部の力をどう取り入れる? 具体的には、自身と部員(採用担当)の考えを書き出し、「集合知」を活用する。また、親会社の採用活動を参考にし、自社に足りない部分(活動)を洗い出し、それらをどのように埋められるか(差をなくせるか/代替アクションがあるか)考えてみたい。これが「外部の力」の活用である。

クリティカルシンキング入門

分析で見える新たな気づき

全体像をどう掴む? まず、全体像を明確にし、その上でMECEの観点から各要素を分けてみることが大切だと感じました。分析の際には、When、Who、Whatといった切り口を用いることで、気づかなかった本質や特徴が見えてくることが実感できます。たとえ分割したときに特徴があまり現れなくても、それ自体が一つの成功といえ、他の切り口での再分析に向けた前進となります。 数字から何が分かる? 次に、プロダクト営業が主な業務となる中で、8期の販売実績を業界別、企業別、新規と既存、リードタイム、職種、引き合い額、受注額、受注率、失注額、失注率、商談からのリードタイム、プロダクト別という多角的な尺度で分析する意義を実感しています。こういった多角的なアプローチにより、見落としがちな側面や新たな効果的手法を発見することができるでしょう。 リソースはどう使う? また、限られた人数でプロダクト販売に取り組む現状を踏まえ、業務分析によってどの部分にリソースを重点的に投下すべきか、あるいは外注した方が効果的かを数字に基づいて判断することが重要です。具体的には、販売実績の分析だけではなく、営業活動自体の業務分析を行い、目標達成のための仮説を立てる取り組みが求められます。 議論のポイントは? 最後に、これらの分析や仮説は常にアップデートし、得られたインサイトをチーム内で議論する機会を積極的に創出することを意識しています。こうした取り組みが、今後の行動計画や業務効率の向上につながると信じています。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

クリティカルシンキング入門

データを可視化して得られる学びの挑戦

数字だけでは捉えきれない問題とは? なぜ数字だけを追うと本質的な問題が捉えられないのでしょうか。それは、情報を表面だけで捉えるのではなく、分解の階層を深くすることで新たな視点が得られるからです。さまざまな切り口で解釈し、グラフなどを用いて俯瞰的に見ることで、視点が変わることがわかりました。 新たな視点を得る思考プロセス この過程で特に印象深かったのは、情報を直接受け止めるのではなく、自分で手を動かし、「他に何か切り口はないか」と考えつつ、出された答えに常に疑問を持つという思考プロセスです。このプロセスに大きな衝撃を受け、学びの多い経験となりました。 医療現場での重要なアプローチは? スタッフの教育や職場環境、患者や家族の問題を常に要素分解して、本質的な問題を抽出し解決する。このアプローチは特に医療現場で役立ちます。医療の現場では、複合的な問題が重なることが多く、特に救急医療においては「秒単位での時間軸」で変化が発生するため、迅速かつ深い分析が求められます。これによって職場や患者により良い医療を提供できるようになるのです。 問題解決にはどのような手法が有効? さらに、全ての問題に対してロジックツリーで考えること、情報を頭の中だけで整理するのではなく、手を動かして可視化することが重要です。また、MECEに従った分解では「何の目的」で分解するのかを常に考え、分解は最低でも3階層まで行うようにします。これにより、数字もグラフ化され、全体を俯瞰できるようになります。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

戦略思考入門

学びと挑戦のリアル軌跡

目標は見えてる? 明確なゴール設定から始まり、現状とのギャップを分析し、そのギャップを埋めるための戦術―つまり、課題抽出とその解決策の策定―が重要であることを改めて認識しました。また、実行することとしないことをはっきりさせることも大切だと感じました。 戦略はどう進む? さらに、自社のビジネス戦略をブラッシュアップするため、学んだフレームワークを活用して、ビジネスインパクトを強化するアイデアを生み出すとともに、これまであまり議論されてこなかった将来の機会やリスクについてのインプットを行いました。これにより、自身の担当領域における中長期戦略の立案が一層具体性を増すこととなりました。 手順は具体的? 現在策定中の2025~2030年の人事戦略においては、以下の手順で戦略を完成させる予定です。まず、既に設定されたゴールをより明確に定義します。次に、そのゴールを達成するために必要な要素を具体的に列挙します。その中で、既に持っている強みと、今まだ不足している機会や弱みをファクトベースのデータ分析により整理します。そして、得られた情報からビジネスインパクトの大きい1~2の領域を選定し、それ以外のものは除外します。選んだ領域に関しては、その裏にある理由やギャップの本質的な課題を徹底的に分析し、解決策を策定します。 合意は取れてる? 最終的には、上司や同僚に戦略ドラフトを提示して議論を重ね、合意形成を図ることで、実効性のある戦略の実現を目指します。

データ・アナリティクス入門

目標設定で描く成功の道

目標設定の極意は? まず、結論のイメージを明確に持ちながら取り組むことの大切さを実感しました。一度目標を定めることで、問題がどこにあるのかを細分化し、解決に向けた要素を順序立てて洗い出すことができると感じています。また、単に分析するだけでなく、考え得る原因を幅広く仮説として立て、実際に検証するプロセスが非常に有効だと考えています。 データ収集の工夫は? 次に、データ収集の段階ではアウトプットとなる最終形を念頭に置き、必要なデータが不足している場合は柔軟に追加を行うことが重要だと思いました。集めたデータに対しては、有用な情報を引き出せるようどのように加工するかを常に考える姿勢が、最終的な成果に大きく寄与すると実感しています。 進捗管理の秘訣は? また、プロジェクトの進捗管理においては、月次レポートの形式や要素を特定する際に、学んだ知識を活用しながら、問題点の洗い出しや原因分析を進めたいと考えています。プロジェクトごとに必要な情報を細分化し、検証することで、より的確な進捗管理が実現できると思います。さらに、可能性のある原因については一つに絞らず、複数の仮説を立てながら網羅的に検討することが効果的だと感じています。 加工方法はどう? 最後に、データ加工に際しては、どのような方法が最適であるかを検討しながら進める必要があると学びました。これまでの学びを今後の実践に活かし、より実践的で効果的なプロジェクト管理に取り組んでいきたいと思います。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

戦略思考入門

3CとSWOTで見つけるビジネス強み

フレームワークの活用法を学ぶ 3C分析とPEST分析は事業の成功を導くための有力なフレームワークです。3C分析では競合、市場、自社の顧客ニーズを整理し、自社の強みを明確にします。さらにSWOT分析を組み合わせることで、弱みや脅威を発見し、それを強みや機会に転換する方法を学びました。これにより、どの場面でどのフレームワークを活用するべきかを理解でき、特にビジネスの比較が具体的にイメージできるようになりました。特徴の理解は強みの発見につながります。 事例を通じた深い理解とは? 特に、実際の事例を通じてフレームワークがどのように適用されるのかを考えることで、理解がより一層深まりました。具体的には、3C分析によって市場や顧客のニーズを把握し、自社の独自性を明確にした後、SWOT分析でその独自性が真の強みであるかを検証することができます。また、バリューチェーン分析を通じて店舗の業務フローを整理し、貢献度の高い部分を特定することの重要性を学びました。 効果的な人材教育を怎麼考える? 業務の効率化に向けて、長期的には設備の導入といった機械化を検討し、短期的には貢献度が高い業務を担う人材の育成に注力します。これには、他部署との連携や市場調査による情報収集が不可欠です。また、人材教育では、資格や等級に応じた研修を実施し、効果的な教育スケジュールを組むことが求められます。こういった要素をフレームワークを駆使して分析し、具体的な戦略を立案することが肝要です。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right