戦略思考入門

顧客の本音で磨く戦略

顧客が選ぶ理由は? 顧客に選ばれることがビジネスの成否のスタート地点であると再認識しました。顧客のニーズを深く理解するとともに、競合他社の情報収集と分析を通じ、自社との差別化ポイントを明確にすることが重要だと感じました。 施策の効果はどう? また、差別化施策を実施する際には、その施策が本当に効果的かどうかを慎重に確認する必要があると学びました。マーケティングの3C分析では、特に他社の情報について、製品、サービス、スタッフ、チャネル、イメージの5つの要素を漏れなく把握することが大切だと理解しました。 戦略の選択はどう? さらに、Porterの基本フレームワークでは、「コスト・リーダーシップ戦略」「差別化戦略」「集中戦略」の中から自社に有効な戦略を選択する必要があると知りました。一つの戦略に固執せず、場合によっては二つの戦略を組み合わせることも有効であり、経営環境に応じた柔軟な戦略見直しが求められていると感じました。特に、コスト・リーダーシップ戦略と差別化戦略の両立については、自社でも検討すべき点だと思いました。 分析で見える強みは? さらに、VRIO分析を通じて、競争優位性の源泉や、組織面での強みを再評価する良い機会となりました。自社の戦略見直しにあたっては、現在の差別化戦略のみならず、コスト・リーダーシップ戦略の有効性も検討し、ファイナンシャル情報を基にコストの分析や価格戦略の見直しを提案していきたいと考えています。 競争優位伸ばすには? 加えて、VRIO分析で特定された自社の競争優位性の強みをさらに発展させるため、組織面の課題に対しても、業界内外での人材獲得競争に勝つためのプランを策定し、提案する所存です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

クリティカルシンキング入門

学びで魅せる問題解決の瞬間

4つの基本は何? 問題解決のステップとして、まず「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の追求)」「How(解決策の立案)」の各要素に沿って、問題が何であるか、どこに問題があるのか、なぜその問題が生じたのか、そしてどのように解決すべきかを整理します。 現状をどう把握? 現状を正確に把握するためには、問題を分解して考えることが基本動作となります。その際、MECE(もれなく・ダブりなく)を常に意識し、目的に応じた適切な切り口と切り方を選ぶことが大切です。 切り口はどう選ぶ? 具体的には、MECEの切り口としてまず、全体集合を部分集合に分ける方法があります。例として、年齢、性別、職業などの観点から情報を整理します。次に、事象を変数で分ける手法、例えば「売上=単価×数量」や「利益=利益/売上」といった考え方があります。さらに、ある事象に至るプロセスに着目し、お客様が不満を感じる可能性のある各段階(ご案内、オーダー、提供時間、味、会計、退店後など)を細かく見極める方法も有効です。 対策はどう決める? サービストレーナーとして店舗向けのクレーム問題に取り組む際は、問題がどの程度のものか、どこに問題があるのか、なぜその問題が発生しているのか、そしてどのような対策を講じるべきかを徹底的に分解しながら分析します。このとき、プロセスの各段階を重視し、冷静かつ客観的に全体を俯瞰することが重要です。 日常にどう活かす? 以上の考え方は、問題が起きた際にネガティブにとらえず、全体像を俯瞰して分析するための基本的なアプローチとして、日常的に意識し習慣化することが求められます。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

クリティカルシンキング入門

情報整理で業務効率を劇的に向上させる方法

情報整理の重要性をどう感じたか? 様々な切り口で情報を分解し、要素を整理することの重要性を改めて実感しました。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方を用いることで、漏れなくダブりのない形でカテゴリを設定できるようになります。これにより、分析や提案の精度が向上することを実感しています。 効果的な提案のために何を考慮すべきか? 例えば、お客様の傾向を分析するときには、業種やニーズ、提案内容など多角的な視点で考えることが重要です。業種ごとにニーズが異なるので、それぞれに応じた提案をすることで、より効果的なアプローチが可能になります。 業務の効率化には何が必要か? また、自分の業務や時間の使い方についても、同様に多面的に考えることが求められます。こうした考え方を定着させることで、より効率的に業務を進めることができるようになります。具体的なフローを考え、その進め方についても見直すことで、業務の効率化が図れることを感じました。 案件成功へのパターンは? さらには、案件の進め方についても同じアプローチが有効です。異なるパターンを検討し、それぞれのパターンが成功する可能性を考えることで、「これなら」という勝ち筋を見つけることができます。こうしたプロセスを経ることで、実際の提案がより具体的で説得力のあるものとなり、お客様に刺さる提案ができるようになります。 MECE活用の意義とは? このように、MECEの考え方を取り入れ、情報を整理し分析することの意義を再確認できました。今後もこの手法を活用して、より効果的な業務遂行を目指していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

アカウンティング入門

大局でひも解く財務の魅力

B/Sの全体像はどう? これまで、あまり重点的に学んでこなかったB/S(バランスシート)について、資産・負債、固定・流動、そして純資産(利益剰余金を含む)の大枠から考察し、その後、各要素の割合や経営方針・安定性について分析する方法を学びました。以前は、B/Sを見ると細部に気を取られ、大局を把握しづらいと感じることが多かったですが、全体構造を押さえることの重要性を再認識できました。 財務諸表はどう比較? また、総合演習では、実際の企業のP/L(損益計算書)とB/Sを用いて比較検討を行いました。例えば、あるサービス提供企業同士では、価値提供の内容の違いからP/Lの構造が異なり、どこにコストがかかっているかを比較することで、各企業の経営戦略や事業モデルの違いを具体的に理解することができました。さらに、ある伝統的な重厚長大産業と、比較的新しい分野の企業とのB/Sの違いを分析することで、それぞれの経営上の特性が浮き彫りになりました。 戦略の未来はどう? 今後は、所属する会社やそのグループ内の各社とでビジネスモデルが異なる特徴を踏まえ、PLとBSの構造の違いを比較検討しながら、提供する価値について自ら論じられる力を養いたいと考えています。経営戦略、事業戦略、技術戦略の策定には、財務分析をより具体的な提言に繋げる役割があるため、各企業の有価証券報告書やネット上の情報、さらには生成AIを活用して、継続的に財務分析に取り組んでいく予定です。加えて、財務諸表と経営戦略については多様な考え方が存在すると認識しており、今後はその点についても自由なディスカッションを行うことで、学びをより実践的な知見へと昇華させていきたいです。

アカウンティング入門

BSで読み解く企業の健康診断

BSの基本は何? BS(貸借対照表)の理解により、期末時点の企業の健康状態を客観的に把握する意義を再確認しました。例えば、筋肉や骨が資産に、贅肉が負債と捉えられるように、BSは資産と負債のバランスを視覚的に示していると感じました。左側が資金の使い方、右側が資金の調達方法となり、両者が一致する点で「バランスシート」と呼ばれる理由が理解できました。 現金化と借入はどうなる? また、BSは現金化に近い順に資産が配列され、損益計算書(PL)の当期純利益がBSの純資産における利益剰余金として反映される点も重要です。借入金は必ずしもマイナス要素ではなく、事業計画に基づいた投資として有意義である一方、利息や返済計画への配慮が必要であることも学びました。 シミュレーションでどう変化? 実践的な視点として、予算策定時に3カ年のPLおよびBSの変化を予測すること、PLに加えてBSの観点から事業の変化を3パターンシミュレーションすること、さらに自社だけでなく複数の企業のBSを分析し対比することで、より具体的な知見を得る方法が提案されています。これにより、単なる数字の動きを超えて、企業全体の財務状況と戦略的な視点が養われると感じました。 分析結果は信頼できる? 実際に、借入が事業の成長に寄与するケースもあれば、無借金経営を標榜する企業が倒産に至るケースもあり、BSの分析は市況や自社の能力など多くの要因を複合的に考慮しなければならないことを痛感しました。私自身、部門担当としてPLを中心に扱っているため、一般的な財務担当者がどのようにBSを活用しているのか、今後さらに学び、実務に生かしていきたいと思います。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right