戦略思考入門

自分も変われる戦略のヒント

戦略の全体像は? WEEK1からWEEK5まで、また動画学習を通じて、戦略思考の全体像を学ぶことができました。特に、目標から逆算する考え方や、プラン作成時に実現可能性を徹底的に検討するプロセスを知り、過去の慣習にとらわれず本当に必要なものかを見極め、不要なものは排除する選択ができるようになっていきたいと感じました。 判断の見直しは? これまで自分の職務に結びつけることを重視してきましたが、今回の学びで仕事以外の場面でも活用できると実感しました。日々の業務に加え、直感やこれまでの経験則に頼った判断を一度立ち止まって見直し、思いついた背景や考えの偏り、抜け漏れがないか確認する習慣を身に着ける重要性を強く感じています。 未来像はどう見る? また、最後のライブ授業で「どういう人になり、どういった人生を送りたいのか」という問いに触れ、自身の職務に偏った考え方から脱却し、広い視点を持つ戦略思考が、組織や社会への貢献、さらには豊かな人生の実現につながることに気づくことができました。 情報活用の秘訣は? さらに、現状分析における情報収集の重要性や、日頃からの情報アンテナの感度を高めておくことが不可欠だと感じています。プランを振り返る際には、現在の状況を正確に把握し、優先順位を決めることが今後の成長につながると考えています。また、自分自身のありたい姿を再検討し、組織から求められることや、自分が本当にやりたいことについて深く掘り下げていく意識が芽生えました。 情報収集の極意は? プラン作成の段階では、必要な情報が何かを検討しながら情報収集を進めることが多く、特に業界全体や競合の動向など、幅広い情報に日頃から触れておくことが重要だと実感しています。情報を収集し、大きな流れを把握することで、必要な情報の選別や深堀りがスムーズになり、プランの精度が高まると考えています。 振り返りで何を掴む? また、プランの振り返りの際には、環境の変化や過去に達成できたこと、反対にできなかったことなどを多面的に分析し、今やるべきこととやらないことを明確に判断していきたいと思います。年間計画の実行状況も振り返りながら、来年度以降の優先順位や興味のある仕事について改めて検討し、自分があるべき姿をブラッシュアップしていくことに意欲を感じています。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける問題解決の鍵

どう進める? 問題解決のプロセスでは、ステップごとに考慮し、解決の基準を言語化し、数値化して、関係者内で合意を得ることが重要です。具体的には、問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、施策の立案(How)という流れで進める必要があります。あるべき姿と現状のギャップを定量化することも求められます。このギャップには、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決の2種類があります。 どう区別する? また、MECE(もれなくダブりなく)に基づいた分け方での問題の区別が重要です。施策の検討においては、ロジックツリーを用い、施策案を作成し、ファクトに基づく評価基準で絞り込むことが必要です。さらに、複数の切り口を検討する準備をすることが大切です。 分析はどう? 定量分析には5つの視点があります。具体的には「インパクト(全体への影響度合い)」、「ギャップ(目標との比較)」、「トレンド(時間軸での把握)」、「ばらつき(集中、均一)」、「パターン(外れ値や変曲点の活用)」があります。特に外れ値については、積極的にビジネスに活用する視点が新しい考え方です。 数値はどう見る? 案①「正しい状態に戻すための問題解決」では、年度目標未達が具体的な問題であり、KGI(人数・収入・営業利益)やKPI(Web流入数、CVR、CTR)が定量化されています。やるべきことは、販売チャネル別の数値把握、変数分解の可視化、定量分析の5つの視点で再検証を行うことです。具体的には、販売チャネル別の人数・収入・利益を再検証し、優先順位を設計し、施策を可視化します。 組織はどう整える? 案②「ありたい姿に到達するための問題解決」では、来年度の組織編制が具体的な問題として挙げられています。計画人員やグループ数が具体的に定量化されており、現状の可視化、中長期的なトレンド把握、目標設定が必要です。具体的には、各課の強みや啓発点の洗い出しを行い、組織の現状の業務が将来の目標に向けて十分であるかを評価し、不足もしくは不要な業務を見定めます。 まとめはどうする? このように、問題解決のステップとMECEなどの手法を用いて、具体的な解決策を導き出すためには、論理的で整理されたアプローチが不可欠です。

クリティカルシンキング入門

問いが未来を拓く学びの一歩

課題の出発点は? 仕事で求められる課題に取り組むには、まず「問い」を明確にすることが大切です。問いがはっきりしていないと、自分だけでなく関係者全員の考えの方向性が揃わず、答えを見つけるのが難しくなります。また、問いが大きすぎると、思考が広がりすぎてしまうため、適切に絞り込む必要があります。 課題の見方は? 問いを明確にするためには、まず課題そのものを正しく把握することが求められます。直感的なイメージだけでは、思い込みや偏った視点が働くことがあるため、利用者、経営者、担当者、競合者、上司、部下など、さまざまな具体的視点から課題を見ると、新たな糸口が見つかりやすくなります。さらに、関係するデータをもれなく、ダブりなく分析することも、新たな視点に繋がります。 答えは見えてる? その結果、たとえ明確な像が浮かばなくても、問題に対して「解」がなかったという答えが得られる場合もあります。問いに取り組む際には、横道にそれず、関係者全体の時間を無駄にしないよう、最初に示した方向性に沿って答えを求めることが重要です。 事例から何学ぶ? 具体的な事例として、郵送検診の受診者数改善の取り組みを考えます。これまでは、受診者が一般に理解しやすい案内文を作成するため、他の医療機関の文例を参考にするのみで、データ分析に基づいたアプローチは行われていませんでした。今後は、受診者の年齢層や性別、その他の属性をしっかりと分析し、アプローチすべき対象を明確にした案内文を作成することが求められます。案内の方向性が定まった段階で、同僚からの意見も取り入れながらプランを練っていきます。 伝える工夫は? また、成果につながるアウトプットには、何を伝えたいのか目的を明確にし、主語や述語をはっきりさせることが重要です。説明の組み立ては、結論、目的、理由の順で整理し、状況分析には適切な表やグラフを利用するなど、情報の流れや優先順位にも配慮する必要があります。 今後の課題は? 最後に、「問い」を明確にすることの重要性や、その際の制約について具体的に理解できる文章になっている点は評価できます。さらに、問いを絞り込む具体的な手法や、異なる視点を活用した経験に基づく考察を加えることで、理解が一層深まることを期待しています。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

マーケティング入門

「顧客視点で売る戦略を学ぶ」

どのようにマーケティング戦略を変えるか? Week.01からの学びを通じて、「何を売るか?」から「誰に売るか?」という流れを一連のプロセスとして把握することができました。ニーズを正確に捉え、「何を売るか」を明確にすることが大切です。そして、提供価値を創造し、「勝てる市場」で「誰に売るか」を明確にすることが求められます。 顧客視点を活かした分析とは? 「何を売るか?」や「誰に売るか?」を決定する際には、細やかで論理的な分析が必要です。また、カスタマージャーニーをじっくり行い、エスノグラフィーを通じて顧客の視点や声を拾い続けることも重要です。ソフトとハードの両面から多角的に捉え、活路を見出していく姿勢が求められます。 想定外の顧客層をどう捉える? また、既存の自社製品やサービスが想定した顧客以外に支持されることもあります。思い込みや固定概念にとらわれず、柔軟な発想をすることが大切です。そのために、定期的に振り返りと分析を行い続けることが必要だと感じました。 軌道修正の重要性とは? さらに、分析や切り口を誤ると期待通りの結果が得られません。間違ったとしても、迅速に軌道修正できるフットワークの軽さが重要です。ポジショニングやセグメンテーション、ターゲティング、そしてプロモーションの4つの要素が一致しているか確認することが不可欠です。 業務委託におけるビジョン形成 現在、社内でさまざまな部署の業務を委託する業務を行っていますが、その中で「ニーズ」や「誰に売るか」が明確でないまま進行してしまうことがあります。現時点で大きな業務委託はありませんが、将来的にはそのビジョンも考えています。今回学んだ内容を活かし、社内業務の整理・分析・設計を行い、ビジョンにつなげたいと考えています。 実践に向けたフレームワークの活用法 「ポジショニング」「セグメンテーション」「ターゲティング」に関するフレームワークは、即実践的に使えるものです。今後の業務提案、業務設計、そして既存業務の見直しに活用していきたいと考えています。また、期末に向けてプレゼン資料を作成する際にも、これらの学びを活かそうと思っています。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

アカウンティング入門

無借金経営の光と影を探る

B/Sから見える経営の違いは? B/Sから、資金の調達方法や運用方法によりビジネスモデルの違いが浮き彫りになることを学びました。例えば、無借金経営の場合、借入金や利息の支払いがないため一定の安心感はあるものの、十分な利益が上がらないと資金繰りが悪化し、次の成長戦略への投資が制限されるリスクがあると理解しました。(具体例として、広告宣伝費やメニュー開発費などが挙げられます。) 営業サイクルはどう理解? また、営業サイクルについては、「仕入→製造→在庫→販売→回収」という一連の流れを再認識し、企業経営における基礎としての重要性を感じました。さらに、業種によって流動資産と固定資産の比率が異なるなど、企業ごとのビジネスモデルに基づく資産の配分の違いも理解できました。 B/Sの違いをどう捉える? 総評として、B/Sを通じた資金調達と運用の違いの理解は非常に有益であり、無借金経営のメリットとデメリットを考慮する視点が印象的でした。また、異なる業種間でのB/Sの違いを具体的に考えることで、ビジネスモデルへの理解が一層深まったと感じています。 無借金経営のリスクは? 今後は、無借金経営における成長戦略の制約をどのようにリスク緩和していくか、また、流動資産と固定資産の割合がビジネスにどのような影響を与えているかについて、さらに詳細な分析を進めたいと考えています。 新規事業計画をどう策定? 新規事業戦略においては、コストや利益構造、資金調達方法について仮説を立て、しっかりとした事業計画を策定することが重要です。どこに資金を投入し、どこで費用を抑えるべきかを明確にし、場合によっては事業構造の見直しや撤退も検討する必要があります。 収益性向上の対策は? まずは現状の把握を行い、その上でコストや利益構造の見直しを実施し、収益性の高いビジネスモデルの構築を目指します。具体的には、ステークホルダーとの業務分担や売上分配率の調整、社内のマンパワーと外注費のバランス、さらにはスキームや手数料の見直しを、今期中に実行する計画です。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

アカウンティング入門

実例で感じる事業計画の力

コンセプトは守れてる? 事業計画を立てる際は、しっかりとしたコンセプトの下で、資金をどこに投入するかを見極めることが重要です。借入は利息を含めた返済が求められるため、借入を避けるだけにこだわってコンセプトがぶれると、顧客の期待とのギャップが生じ、事業全体の価値が下がるリスクがあります。コア・バリューを守ることが、事業計画の成功に不可欠です。 利益配分はどう? 具体例として、売上が500万円、原価率が30%、固定費(人件費や家賃)が150万円の場合、営業利益は200万円となります。この利益を以下のように資金分配することが考えられます。まず、借入返済に50万円を充て、金利負担の軽減と財務健全性の向上を図ります。次に、ブランド価値の向上や将来の収益性アップを目指して70万円を再投資に回します。売上の変動に備え、30万円を内部留保し、あとはオーナー報酬・配当として50万円を還元します。 他の資金調達は? 全体的に、事業計画における明確なコンセプトと具体的な資金分配例がよく示されています。ただし、借入以外の資金調達方法についても検討することで、さらに理解を深めることができるでしょう。 資金と顧客はどう? また、資金繰りと顧客価値のバランスや、借入以外の資金調達の選択肢にも目を向けることが今後の課題といえます。事業計画を実行に移す際は、具体的なリスク管理プランにも注力すると良いでしょう。 資料を見直すべき? さらに、業務資料の見直しにおいては、顧客視点での分かりやすさが求められます。例えば、収益性(利益率や資金の回り方)を図表で示し、健全な経営が可能であることを説明する方法が効果的です。見直し案として、3期比較による損益構造の可視化、利益率のトレンド分析、資金の流れをタイムライン図で示すといった工夫が考えられます。また、資金分配シナリオの比較(保守型、成長型、高リスク型)や投資回収シミュレーションについても、表やグラフを用いて視覚的に示すことで、リスクと収益性のバランスがより明確になるでしょう。

「分析 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right